Journal of Neuroimmune Pharmacology

, Volume 1, Issue 2, pp 117–126 | Cite as

Microglia as a Pharmacological Target in Infectious and Inflammatory Diseases of the Brain

Invited Review

Abstract

Following an eclipse of scientific inquiry regarding the biology of microglia that lasted 50 years, recognition toward the end of the 20th century of their neuropathogenic role in HIV-associated dementia and in neuroinflammatory/neurodegenerative diseases fueled a renaissance of interest in these resident macrophages of the brain parenchyma. Results of a large number of in vitro studies, using isolated microglial cells or glial/neuronal cell cultures, and parallel findings emerging from animal models and clinical studies have demonstrated that activated microglia produce a myriad of inflammatory mediators that both serve important defense functions against invading neurotropic pathogens and have been implicated in brain damage in infectious as well as neuroinflammatory/neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This review provides a brief background regarding the physiological and pathophysiological roles of microglia and highlights current pharmacological approaches that target activated microglia with the goal of ameliorating infectious and neuroinflammatory/neurodegenerative diseases of the brain. Although this aspect of the field of neuroimmunopharmacology is in its infancy, it holds great promise for developing new treatments and prevention of diseases that are, in many cases, epidemic throughout the world.

Keywords

Microglia Central nervous system infections Neuroinflammation Neurodegenerative diseases 

References

  1. Adle-Biassette H, Chretien F, Wingertsmann L, Hery C, Ereau T, Scaravilli F, Tardieu M, Gray F (1999) Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol Appl Neurobiol 25:123–133CrossRefPubMedGoogle Scholar
  2. Albright AV, Shieh JT, O'Connor MJ, Gonzalez-Scarano F (2000) Characterization of cultured microglia that can be infected by HIV-1. J Neurovirol 6(Suppl 1):S53–S60PubMedGoogle Scholar
  3. Anthony DC, Ferguson B, Matyzak MK, Miller KM, Esiri MM, Perry VH (1997) Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol 23:406–415CrossRefPubMedGoogle Scholar
  4. Barcia C, Sanchez Bahillo A, Fernandez-Villalba E, Bautista V, Poza YPM, Fernandez-Barreiro A, Hirsch EC, Herrero MT (2004) Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia 46:402–409CrossRefPubMedGoogle Scholar
  5. Berenguer J, Moreno S, Laguna F, Vicente T, Adrados M, Ortega A, Gonzalez-LaHoz J, Bouza E (1992) Tuberculous meningitis in patients infected with the human immunodeficiency virus. N Engl J Med 326:668–672PubMedGoogle Scholar
  6. Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T, Zhao YQ, Wu CF (2005) Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol 5:185–193CrossRefPubMedGoogle Scholar
  7. Blasi E, Barluzzi R, Mazzolla R, Tancini B, Saleppico S, Puliti M, Pitzurra L, Bistoni F (1995) Role of nitric oxide and melanogenesis in the accomplishment of anticryptococcal activity by the BV-2 microglial cell line. J Neuroimmunol 58:111–116CrossRefPubMedGoogle Scholar
  8. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98CrossRefPubMedGoogle Scholar
  9. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31(1):149–60CrossRefPubMedGoogle Scholar
  10. Cacci E, Claasen JH, Kokaia Z (2005) Microglia-derived tumor necrosis factor-alpha exaggerates death of newborn hippocampal progenitor cells in vitro. J Neurosci Res 80:789–797CrossRefPubMedGoogle Scholar
  11. Cagnin A, Myers R, Gunn RN, Lawrence AD, Stevens T, Kreutzberg GW, Jones T, Banati RB (2001) In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain 124:2014–2027CrossRefPubMedGoogle Scholar
  12. Chen MK, Baidoo K, Verina T, Guilarte TR (2004) Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. Brain 127:1379–1392CrossRefPubMedGoogle Scholar
  13. Curto M, Reali C, Palmieri G, Scintu F, Schivo ML, Sogos V, Marcialis MA, Ennas MG, Schwarz H, Pozzi G, Gremo F (2004) Inhibition of cytokines expression in human microglia infected by virulent and non-virulent mycobacteria. Neurochem Int 44:381–392CrossRefPubMedGoogle Scholar
  14. del Rio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and Cellular Pathology of the Nervous System. P.B. Hoebaer, New York, pp 483–534Google Scholar
  15. Dheen ST, Jun Y, Yan Z, Tay SS, Ling EA (2005) Retinoic acid inhibits expression of TNF-alpha and iNOS in activated rat microglia. Glia 50:21–31CrossRefPubMedGoogle Scholar
  16. Fan LW, Pang Y, Lin S, Tien LT, Ma T, Rhodes PG, Cai Z (2005) Minocycline reduces lipopolysaccharide-induced neurological dysfunction and brain injury in the neonatal rat. J Neurosci Res 82:71–82CrossRefPubMedGoogle Scholar
  17. Farber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Brain Res Rev 48:133–143CrossRefPubMedGoogle Scholar
  18. Farer LS, Lowell AM, Meador MP (1979) Extrapulmonary tuberculosis in the United States. Am J Epidemiol 109:205–217PubMedGoogle Scholar
  19. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38:755–762CrossRefPubMedGoogle Scholar
  20. Goldman D, Song X, Kitai R, Casadevall A, Zhao ML, Lee SC (2001) Cryptococcus neoformans induces macrophage inflammatory protein 1 alpha (MIP-1 alpha) and MIP-1 beta in human microglia: role of specific antibody and soluble capsular polysaccharide. Infect Immun 69:1808–1815CrossRefPubMedGoogle Scholar
  21. Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75:388–397CrossRefPubMedGoogle Scholar
  22. Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson's disease: is there a causal link? Exp Neurol 193:279–290CrossRefPubMedGoogle Scholar
  23. Hirohata M, Ono K, Naiki H, Yamada M (2005) Non-steroidal anti-inflammatory drugs have anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. Neuropharmacology 49:1088–99CrossRefPubMedGoogle Scholar
  24. Hoozemans JJ, O'Banion MK (2005) The role of COX-1 and COX-2 in Alzheimer's disease pathology and the therapeutic potentials of non-steroidal anti-inflammatory drugs. Curr Drug Targets CNS Neurol Disord 4:307–315CrossRefPubMedGoogle Scholar
  25. Jack C, Ruffini F, Bar-Or A, Antel JP (2005) Microglia and multiple sclerosis. J Neurosci Res 81:363–373CrossRefPubMedGoogle Scholar
  26. Lee SC, Liu W, Brosnan CF, Dickson DW (1992) Characterization of primary human fetal dissociated central nervous system cultures with an emphasis on microglia. Lab Invest 67:465–476PubMedGoogle Scholar
  27. Lehrmann E, Kiefer R, Christensen T, Toyka KV, Zimmer J, Diemer NH, Hartung HP, Finsen B (1998) Microglia and macrophages are major sources of locally produced transforming growth factor-beta1 after transient middle cerebral artery occlusion in rats. Glia 24:437–448CrossRefPubMedGoogle Scholar
  28. Leonard JM, Des Prez RM (1990) Tuberculous meningitis. Infect Dis Clin North Am 4:769–787PubMedGoogle Scholar
  29. Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 102:9936–9941PubMedCrossRefGoogle Scholar
  30. Lindberg C, Crisby M, Winblad B, Schultzberg M (2005) Effects of statins on microglia. J Neurosci Res 82:10–19CrossRefPubMedGoogle Scholar
  31. Lipovsky MM, Gekker G, Anderson WR, Molitor TW, Peterson PK, Hoepelman AI (1997) Phagocytosis of nonopsonized Cryptococcus neoformans by swine microglia involves CD14 receptors. Clin Immunol Immunopathol 84:208–211CrossRefPubMedGoogle Scholar
  32. Lipovsky MM, Gekker G, Hu S, Hoepelman AI, Peterson PK (1998a) Morphine enhances complement receptor-mediated phagocytosis of Cryptococcus neoformans by human microglia. Clin Immunol Immunopathol 87:163–167CrossRefGoogle Scholar
  33. Lipovsky MM, Juliana AE, Gekker G, Hu S, Hoepelman AI, Peterson PK (1998b) Effect of cytokines on anticryptococcal activity of human microglial cells. Clin Diagn Lab Immunol 5:410–411Google Scholar
  34. Lipton SA, Gendelman HE (1995) Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med 332:934–940CrossRefPubMedGoogle Scholar
  35. Liuzzi GM, Santacroce MP, Peumans WJ, Van Damme EJ, Dubois B, Opdenakker G, Riccio P (1999) Regulation of gelatinases in microglia and astrocyte cell cultures by plant lectins. Glia 27:53–61CrossRefPubMedGoogle Scholar
  36. Loscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602CrossRefPubMedGoogle Scholar
  37. Matute C, Alberdi E, Ibarretxe G, Sanchez-Gomez MV (2002) Excitotoxicity in glial cells. Eur J Pharmacol 447: 239–246PubMedCrossRefGoogle Scholar
  38. Mazzolla R, Barluzzi R, Brozzetti A, Boelaert JR, Luna T, Saleppico S, Bistoni F, Blasi E (1997) Enhanced resistance to Cryptococcus neoformans infection induced by chloroquine in a murine model of meningoencephalitis. Antimicrob Agents Chemother 41:802–807PubMedGoogle Scholar
  39. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21:195–218CrossRefPubMedGoogle Scholar
  40. Nakajima K, Kohsaka S (2002) Neuroprotective roles of microglia in the central nervous system. In: Microglia in the Regenerating and Degenerating CNS. Springer Verlag, New YorkGoogle Scholar
  41. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318CrossRefPubMedGoogle Scholar
  42. O'Toole M, Janszen DB, Slonim DK, Reddy PS, Ellis DK, Legault HM, Hill AA, Whitley MZ, Mounts WM, Zuberek K, Immermann FW, Black RS, Dorner AJ (2005) Risk factors associated with beta-amyloid(1–42) immunotherapy in preimmunization gene expression patterns of blood cells. Arch Neurol 62:1531–1536CrossRefPubMedGoogle Scholar
  43. Peng GS, Li G, Tzeng NS, Chen PS, Chuang DM, Hsu YD, Yang S, Hong JS (2005) Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Brain Res Mol Brain Res 134:162–169CrossRefPubMedGoogle Scholar
  44. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, Galasko D, Jin S, Kaye J, Levey A, Pfeiffer E, Sano M, van Dyck CH, Thal LJ (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352:2379–2388CrossRefPubMedGoogle Scholar
  45. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271PubMedCrossRefGoogle Scholar
  46. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821CrossRefPubMedGoogle Scholar
  47. Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17:942–964CrossRefPubMedGoogle Scholar
  48. Rock RB, Hu S, Gekker G, Sheng WS, May B, Kapur V, Peterson PK (2005) Mycobacterium tuberculosis-induced cytokine and chemokine expression by human microglia and astrocytes: effects of dexamethasone. J Infect Dis 192:2054–2058CrossRefPubMedGoogle Scholar
  49. Rogers J, Lue LF (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer's disease. Neurochem Int 39:333–340CrossRefPubMedGoogle Scholar
  50. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77PubMedCrossRefGoogle Scholar
  51. Si Q, Cosenza M, Kim MO, Zhao ML, Brownlee M, Goldstein H, Lee S (2004) A novel action of minocycline: inhibition of human immunodeficiency virus type 1 infection in microglia. J Neurovirol 10:284–292CrossRefPubMedGoogle Scholar
  52. Sowa G, Gekker G, Lipovsky MM, Hu S, Chao CC, Molitor TW, Peterson PK (1997) Inhibition of swine microglial cell phagocytosis of Cryptococcus neoformans by femtomolar concentrations of morphine. Biochem Pharmacol 53:823–828CrossRefPubMedGoogle Scholar
  53. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139CrossRefPubMedGoogle Scholar
  54. Streit WJ (2005) Microglia and neuroprotection: implications for Alzheimer's disease. Brain Res Brain Res Rev 48:234–239CrossRefPubMedGoogle Scholar
  55. Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311:1–7CrossRefPubMedGoogle Scholar
  56. Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15:601–609CrossRefPubMedGoogle Scholar
  57. Tzeng SF, Hsiao HY, Mak OT (2005) Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr Drug Targets Inflamm Allergy 4:335–340CrossRefPubMedGoogle Scholar
  58. Weydt P, Moller T (2005) Neuroinflammation in the pathogenesis of amyotrophic lateral sclerosis. NeuroReport 16:527–531CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media 2006

Authors and Affiliations

  1. 1.Center for Infectious Diseases and Microbiology, Translational Research and the Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations