Journal of Neuroimmune Pharmacology

, Volume 1, Issue 1, pp 32–40 | Cite as

Macrophage Colony-Stimulating Factor in the Pathogenesis of HIV Infection: Potential Target for Therapeutic Intervention

  • Valerie Haine
  • Tracy Fischer-Smith
  • Jay RappaportEmail author
Invited Review


Macrophage colony stimulating factor (M-CSF) appears to play a major role in promoting and maintaining reservoirs of human immunodeficiency virus type 1 (HIV-1) in infected individuals. HIV-1 infection induces production of M-CSF by macrophages, which in turn promotes further infection of macrophages via increases in CD4 and CCR5 receptors, as well as increases in virus gene expression. M-CSF promotes the ontogeny and survival of macrophages, contributing to both the number and longevity of these infected cells. M-CSF dysregulation promotes the differentiation of monocytes toward macrophages and osteoclasts and at the same time may inhibit differentiation toward dendritic cells, resulting in immune impairment. The potential role of M-CSF in HIV-associated end organ diseases including HIV-associated dementia, HIV-associated nephropathy, and osteoporosis is discussed. This review emphasizes the need for developing M-CSF antagonists for treatment of HIV-1-infected patients.


M-CSF CSF-1 HIV-1 Virus replication Nephropathy Osteoporosis 


  1. Alonso K, Pontiggia P, Medenica R, Rizzo S (1997) Cytokine patterns in adults with AIDS. Immunol Invest 26:341–350PubMedCrossRefGoogle Scholar
  2. Annapoorna N, Rao GV, Reddy NS, Rambabu P, Rao KR (2004) An increased risk of osteoporosis during acquired immunodeficiency syndrome. Int J Med Sci 1:152–164PubMedGoogle Scholar
  3. Bartelmez SH, Bradley TR, Bertoncello I, Mochizuki DY, Tushinski RJ, Stanley ER, Hapel AJ, Young IG, Kriegler AB, Hodgson GS (1989) Interleukin 1 plus interleukin 3 plus colony-stimulating factor 1 are essential for clonal proliferation of primitive myeloid bone marrow cells. Exp Hematol 17:240–245PubMedGoogle Scholar
  4. Bell JE (2004) An update on the neuropathology of HIV in the HAART era. Histopathology 45:549–559CrossRefPubMedGoogle Scholar
  5. Bergamini A, Perno CF, Dini L, Capozzi M, Pesce CD, Ventura L, Cappannoli L, Falasca L, Milanese G, Calio R (1994) Macrophage colony-stimulating factor enhances the susceptibility of macrophages to infection by human immunodeficiency virus and reduces the activity of compounds that inhibit virus binding. Blood 84:3405–3412PubMedGoogle Scholar
  6. Bour S, Geleziunas R, Wainberg MA (1995) The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection. Microbiol Rev 59:63–93PubMedGoogle Scholar
  7. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268PubMedCrossRefGoogle Scholar
  8. Canque B, Rosenzwajg M, Gey A, Tartour E, Fridman WH, Gluckman JC (1996) Macrophage inflammatory protein-1alpha is induced by human immunodeficiency virus infection of monocyte-derived macrophages. Blood 87:2011–2019PubMedGoogle Scholar
  9. Chehimi J, Campbell DE, Azzoni L, Bacheller D, Papasavvas E, Jerandi G, Mounzer K, Kostman J, Trinchieri G, Montaner LJ (2002) Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J Immunol 168:4796–4801PubMedGoogle Scholar
  10. Cinque P, Vago L, Ceresa D, Mainini F, Terreni MR, Vagani A, Torri W, Bossolasco S, Lazzarin A (1998) Cerebrospinal fluid HIV-1 RNA levels: correlation with HIV encephalitis. AIDS 12:389–394PubMedCrossRefGoogle Scholar
  11. Corder EH, Robertson K, Lannfelt L, Bogdanovic N, Eggertsen G, Wilkins J, Hall C (1998) HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy. Nat Med 4:1182–1184CrossRefPubMedGoogle Scholar
  12. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111–1202CrossRefPubMedGoogle Scholar
  13. De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113(Pt 11):1857–1870PubMedGoogle Scholar
  14. Dickie P, Felser J, Eckhaus M, Bryant J, Silver J, Marinos N, Notkins AL (1991) HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology 185:109–119CrossRefPubMedGoogle Scholar
  15. Dickie P, Roberts A, Uwiera R, Witmer J, Sharma K, Kopp JB (2004) Focal glomerulosclerosis in proviral and c–fms transgenic mice links Vpr expression to HIV-associated nephropathy. Virology 322:69–81CrossRefPubMedGoogle Scholar
  16. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC–CKR–5. Nature 381:667–673CrossRefPubMedGoogle Scholar
  17. Fischer–Smith T, Croul S, Sverstiuk AE, Capini C, L'Heureux D, Regulier EG, Richardson MW, Amini S, Morgello S, Khalili K, Rappaport J (2001) CNS invasion by CD14+/CD16+peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol 7:528–541CrossRefPubMedGoogle Scholar
  18. Fixe P, Praloran V (1998) M-CSF: haematopoietic growth factor or inflammatory cytokine? Cytokine 10:32–37CrossRefPubMedGoogle Scholar
  19. Gadducci A, Ferdeghini M, Castellani C, Annicchiarico C, Prontera C, Facchini V, Bianchi R, Genazzani AR (1998) Serum macrophage colony-stimulating factor (M-CSF) levels in patients with epithelial ovarian cancer. Gynecol Oncol 70:111–114CrossRefPubMedGoogle Scholar
  20. Gallo P, Laverda AM, De Rossi A, Pagni S, Del Mistro A, Cogo P, Piccinno MG, Plebani A, Tavolato B, Chieco–Bianchi L (1991) Immunological markers in the cerebrospinal fluid of HIV-1–infected children. Acta Paediatr Scand 80:659–666PubMedCrossRefGoogle Scholar
  21. Gallo P, De Rossi A, Sivieri S, Chieco–Bianchi L, Tavolato B (1994) M-CSF production by HIV-1–infected monocytes and its intrathecal synthesis. Implications for neurological HIV-1–related disease. J Neuroimmunol 51:193–198CrossRefPubMedGoogle Scholar
  22. Garbuglia AR, Zaccarelli M, Calcaterra S, Cappiello G, Marini R, Benedetto A (2001) Dynamics of viral load in plasma and HIV DNA in lymphocytes during highly active antiretroviral therapy (HAART): high viral burden in macrophages after 1 year of treatment. J Chemother 13:188–194PubMedGoogle Scholar
  23. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38:755–762CrossRefPubMedGoogle Scholar
  24. Glesby MJ (2003) Bone disorders in human immunodeficiency virus infection. Clin Infect Dis 37(Suppl 2):S91–S95CrossRefPubMedGoogle Scholar
  25. Gonzalez–Scarano F, Martin–Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81CrossRefPubMedGoogle Scholar
  26. Gruber MF, Weih KA, Boone EJ, Smith PD, Clouse KA (1995) Endogenous macrophage CSF production is associated with viral replication in HIV-1–infected human monocyte-derived macrophages. J Immunol 154:5528–5535PubMedGoogle Scholar
  27. Henderson AJ, Calame KL (1997) CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4(+) T cells. Proc Natl Acad Sci U S A 94:8714–8719CrossRefPubMedGoogle Scholar
  28. Henderson AJ, Connor RI, Calame KL (1996) C/EBP activators are required for HIV-1 replication and proviral induction in monocytic cell lines. Immunity 5:91–101CrossRefPubMedGoogle Scholar
  29. Hofmann B, Odum N, Jakobsen BK, Platz P, Ryder LP, Nielsen JO, Gerstoft J, Svejgaard A (1986) Immunological studies in the acquired immunodeficiency syndrome. II. Active suppression or intrinsic defect-investigated by mixing AIDS cells with HLA–DR identical normal cells. Scand J Immunol 23:669–678PubMedCrossRefGoogle Scholar
  30. Hollak CE, Evers L, Aerts JM, van Oers MH (1997) Elevated levels of M-CSF, sCD14 and IL8 in type 1 Gaucher disease. Blood Cells Mol Dis 23:201–212CrossRefPubMedGoogle Scholar
  31. Honda Y, Rogers L, Nakata K, Zhao BY, Pine R, Nakai Y, Kurosu K, Rom WN, Weiden M (1998) Type I interferon induces inhibitory 16–kD CCAAT/enhancer binding protein (C/EBP)beta, repressing the HIV-1 long terminal repeat in macrophages: pulmonary tuberculosis alters C/EBP expression, enhancing HIV-1 replication. J Exp Med 188:1255–1265CrossRefPubMedGoogle Scholar
  32. Igarashi T, Brown CR, Endo Y, Buckler–White A, Plishka R, Bischofberger N, Hirsch V, Martin MA (2001) Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): implications for HIV-1 infections of humans. Proc Natl Acad Sci U S A 98:658–663CrossRefPubMedGoogle Scholar
  33. Ji XH, Sun LH, Qin JC, Yao K, Ding RN, Li HD, Zhu DX (2000) Effects of rhM-CSF expressed in silkworm on cytokine productions and membrane molecule expressions of human monocytes. Acta Pharmacol Sin 21:797–801PubMedGoogle Scholar
  34. Jin Y, Dons L, Kristensson K, Rottenberg ME (2002) Colony-stimulating factor 1–dependent cells protect against systemic infection with Listeria monocytogenes but facilitate neuroinvasion. Infect Immun 70:4682–4686CrossRefPubMedGoogle Scholar
  35. Kajiyama W, Kopp JB, Marinos NJ, Klotman PE, Dickie P (2000) Glomerulosclerosis and viral gene expression in HIV-transgenic mice: role of nef. Kidney Int 58:1148–1159CrossRefPubMedGoogle Scholar
  36. Kalter DC, Nakamura M, Turpin JA, Baca LM, Hoover DL, Dieffenbach C, Ralph P, Gendelman HE, Meltzer MS (1991) Enhanced HIV replication in macrophage colony-stimulating factor-treated monocytes. J Immunol 146:298–306PubMedGoogle Scholar
  37. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994CrossRefPubMedGoogle Scholar
  38. Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055CrossRefPubMedGoogle Scholar
  39. Komuro I, Yokota Y, Yasuda S, Iwamoto A, Kagawa KS (2003) CSF-induced and HIV-1–mediated distinct regulation of Hck and C/EBPbeta represent a heterogeneous susceptibility of monocyte-derived macrophages to M-tropic HIV-1 infection. J Exp Med 198:443–453CrossRefPubMedGoogle Scholar
  40. Kure K, Llena JF, Lyman WD, Soeiro R, Weidenheim KM, Hirano A, Dickson DW (1991) Human immunodeficiency virus–1 infection of the nervous system: an autopsy study of 268 adult, pediatric, and fetal brains. Hum Pathol 22:700–710CrossRefPubMedGoogle Scholar
  41. Kutza J, Crim L, Feldman S, Hayes MP, Gruber M, Beeler J, Clouse KA (2000) Macrophage colony-stimulating factor antagonists inhibit replication of HIV-1 in human macrophages. J Immunol 164:4955–4960PubMedGoogle Scholar
  42. Lafrenie RM, Lee SF, Hewlett IK, Yamada KM, Dhawan S (2002) Involvement of integrin alphavbeta3 in the pathogenesis of human immunodeficiency virus type 1 infection in monocytes. Virology 297:31–38CrossRefPubMedGoogle Scholar
  43. Lambotte O, Taoufik Y, de Goer MG, Wallon C, Goujard C, Delfraissy JF (2000) Detection of infectious HIV in circulating monocytes from patients on prolonged highly active antiretroviral therapy. J Acquir Immune Defic Syndr 23:114–119PubMedGoogle Scholar
  44. Lee ES, Sarma D, Zhou H, Henderson AJ (2002) CCAAT/enhancer binding proteins are not required for HIV-1 entry but regulate proviral transcription by recruiting coactivators to the long-terminal repeat in monocytic cells. Virology 299:20–31CrossRefPubMedGoogle Scholar
  45. Lenda DM, Stanley ER, Kelley VR (2004) Negative role of colony-stimulating factor–1 in macrophage, T cell, and B cell mediated autoimmune disease in MRL–Fas(lpr) mice. J Immunol 173:4744–4754PubMedGoogle Scholar
  46. Little SJ, Holte S, Routy JP, Daar ES, Markowitz M, Collier AC, Koup RA, Mellors JW, Connick E, Conway B, Kilby M, Wang L, Whitcomb JM, Hellmann NS, Richman DD (2002) Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med 347:385–394CrossRefPubMedGoogle Scholar
  47. Lu TC, Ross M (2005) HIV-associated nephropathy: a brief review. Mt Sinai J Med 72:193–199PubMedGoogle Scholar
  48. Macatonia SE, Gompels M, Pinching AJ, Patterson S, Knight SC (1992) Antigen-presentation by macrophages but not by dendritic cells in human immunodeficiency virus (HIV) infection. Immunology 75:576–581PubMedGoogle Scholar
  49. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137CrossRefPubMedGoogle Scholar
  50. McArthur JC, McClernon DR, Cronin MF, Nance–Sproson TE, Saah AJ, St Clair M, Lanier ER (1997) Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42:689–698CrossRefPubMedGoogle Scholar
  51. Meltzer MS, Skillman DR, Gomatos PJ, Kalter DC, Gendelman HE (1990) Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Annu Rev Immunol 8:169–194PubMedGoogle Scholar
  52. Miyamoto T, Ohneda O, Arai F, Iwamoto K, Okada S, Takagi K, Anderson DM, Suda T (2001) Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 98:2544–2554CrossRefPubMedGoogle Scholar
  53. Nagamura–Inoue T, Tamura T, Ozato K (2001) Transcription factors that regulate growth and differentiation of myeloid cells. Int Rev Immunol 20:83–105PubMedGoogle Scholar
  54. Nebuloni M, Pellegrinelli A, Ferri A, Bonetto S, Boldorini R, Vago L, Grassi MP, Costanzi G (2001) Beta amyloid precursor protein and patterns of HIV p24 immunohistochemistry in different brain areas of AIDS patients. AIDS 15:571–575CrossRefPubMedGoogle Scholar
  55. Oravecz T, Pall M, Roderiquez G, Gorrell MD, Ditto M, Nguyen NY, Boykins R, Unsworth E, Norcross MA (1997) Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)–mediated cleavage. J Exp Med 186:1865–1872CrossRefPubMedGoogle Scholar
  56. Ossipow V, Descombes P, Schibler U (1993) CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. Proc Natl Acad Sci U S A 90:8219–8223CrossRefPubMedGoogle Scholar
  57. Palucka KA, Taquet N, Sanchez–Chapuis F, Gluckman JC (1998) Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 160:4587–4595PubMedGoogle Scholar
  58. Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638CrossRefPubMedGoogle Scholar
  59. Porwit A, Parravicini C, Petren AL, Barkhem T, Costanzi G, Josephs S, Biberfeld P (1989) Cell association of HIV in AIDS-related encephalopathy and dementia. APMIS 97:79–90PubMedCrossRefGoogle Scholar
  60. Potter SJ, Chew CB, Steain M, Dwyer DE, Saksena NK (2004) Obstacles to successful antiretroviral treatment of HIV-1 infection: problems and perspectives. Indian J Med Res 119:217–237PubMedGoogle Scholar
  61. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997) Unique monocyte subset in patients with AIDS dementia. Lancet 349:692–695CrossRefPubMedGoogle Scholar
  62. Pumarola–Sune T, Navia BA, Cordon–Cardo C, Cho ES, Price RW (1987) HIV antigen in the brains of patients with the AIDS dementia complex. Ann Neurol 21:490–496CrossRefPubMedGoogle Scholar
  63. Regulier EG, Reiss K, Khalili K, Amini S, Zagury JF, Katsikis PD, Rappaport J (2004) T–cell and neuronal apoptosis in HIV infection: implications for therapeutic intervention. Int Rev Immunol 23:25–59PubMedCrossRefGoogle Scholar
  64. Rosati M, Valentin A, Patenaude DJ, Pavlakis GN (2001) CCAAT–enhancer-binding protein beta (C/EBP beta) activates CCR5 promoter: increased C/EBP beta and CCR5 in T lymphocytes from HIV-1–infected individuals. J Immunol 167:1654–1662PubMedGoogle Scholar
  65. Saionji K, Ohsaka A (2001) Expansion of CD4+CD16+ blood monocytes in patients with chronic renal failure undergoing dialysis: possible involvement of macrophage colony-stimulating factor. Acta Haematol 105:21–26CrossRefPubMedGoogle Scholar
  66. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR–5 chemokine receptor gene. Nature 382:722–725CrossRefPubMedGoogle Scholar
  67. Schifitto G, McDermott MP, McArthur JC, Marder K, Sacktor N, McClernon DR, Conant K, Cohen B, Epstein LG, Kieburtz K (2005) Markers of immune activation and viral load in HIV-associated sensory neuropathy. Neurology 64:842–848PubMedGoogle Scholar
  68. Si Q, Cosenza M, Zhao ML, Goldstein H, Lee SC (2002) GM-CSF and M-CSF modulate beta–chemokine and HIV-1 expression in microglia. Glia 39:174–183CrossRefPubMedGoogle Scholar
  69. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw–Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319CrossRefPubMedGoogle Scholar
  70. Stanley ER, Chen DM, Lin HS (1978) Induction of macrophage production and proliferation by a purified colony stimulating factor. Nature 274:168–170CrossRefPubMedGoogle Scholar
  71. Stohr J, Schindler G, Rothe G, Schmitz G (1998) Enhanced upregulation of the Fc gamma receptor IIIa (CD16a) during in vitro differentiation of ApoE4/4 monocytes. Arterioscler Thromb Vasc Biol 18:1424–1432PubMedGoogle Scholar
  72. Suzu S, Yanai N, Sato–Somoto Y, Yamada M, Kawashima T, Hanamura T, Nagata N, Takaku F, Motoyoshi K. Characterization of macrophage colony-stimulating factor in body fluids by immunoblot analysis. Blood 77:2160–2165PubMedGoogle Scholar
  73. Suzu S, Harada H, Matsumoto T, Okada S (2005) HIV-1 Nef interferes with M-CSF receptor signaling through Hck activation and inhibits M-CSF bioactivities. Blood 105:3230–3237CrossRefPubMedGoogle Scholar
  74. Tushinski RJ, Oliver IT, Guilbert LJ, Tynan PW, Warner JR, Stanley ER (1982) Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28:71–81CrossRefPubMedGoogle Scholar
  75. Vaananen K (2005) Mechanism of osteoclast mediated bone resorption—rationale for the design of new therapeutics. Adv Drug Deliv Rev 57:959–971CrossRefPubMedGoogle Scholar
  76. Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes OA, Grove J, Liu Y, Abdul–Majid KB, Gartner S, Sacktor N (2004) Age, apolipoprotein E4, and the risk of HIV dementia: the Hawaii Aging with HIV Cohort. J Neuroimmunol 157:197–202CrossRefPubMedGoogle Scholar
  77. Vehmas A, Lieu J, Pardo CA, McArthur JC, Gartner S (2004) Amyloid precursor protein expression in circulating monocytes and brain macrophages from patients with HIV-associated cognitive impairment. J Neuroimmunol 157:99–110CrossRefPubMedGoogle Scholar
  78. Yamada N, Tsujimura T, Ueda H, Hayashi S, Ohyama H, Okamura H, Terada N (2005) Down-regulation of osteoprotegerin production in bone marrow macrophages by macrophage colony-stimulating factor. Cytokine 31:288–297CrossRefPubMedGoogle Scholar
  79. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media 2006

Authors and Affiliations

  • Valerie Haine
    • 1
  • Tracy Fischer-Smith
    • 1
  • Jay Rappaport
    • 1
    Email author
  1. 1.Department of Neuroscience, Center for NeurovirologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations