Advertisement

Does Money Control Enhance the Effectiveness of CBT for Gambling Disorder?

  • Roser Granero
  • Alex Blaszczynski
  • Fernando Fernández-Aranda
  • Mónica Gómez-Peña
  • Laura Moragas
  • Neus Aymamí
  • Amparo del Pino-Gutiérrez
  • Ester Codina
  • Teresa Mena-Moreno
  • Cristina Vintró-Alcáraz
  • María Lozano-Madrid
  • Zaida Agüera
  • Hibai López-González
  • Eduardo Valenciano-Mendoza
  • Bernat Mora
  • Lucero Munguía
  • Giulia Testa
  • Isabel Baenas-Soto
  • José M. Menchón
  • Susana Jiménez-MurciaEmail author
Original Article

Abstract

Several therapy modalities have been developed for gambling disorder (GD), and the cognitive behavioral therapy (CBT) is one of the most promising approaches. The objective of this study was to explore the impact of patients’ adherence to guidelines concerning money control on the effectiveness and outcomes of a CBT program. Sample included n = 998 gambling disorder (GD) patients aged between 18 and 80 years old, who were consecutively attended in a Spanish reference-university-based hospital specialized in gambling treatment. The CBT program consisted of 16 weekly group sessions (each lasting about 90 min) aimed to achieve definitive abstinence from all types of gambling. Money control was integrated during the complete treatment. Different assessments were made: at baseline, during the CBT program, and at the end of the intervention. The risk of dropout during therapy was lower in patients who reported money control (19.1% versus 76.4%, p = 0.001), and differences were also found in the Kaplan-Meier cumulative survival functions of dropout (χ2 = 118.9, p < 0.001). No differences were found for the risk of relapse (defined in this study as the occurrence of gambling episodes during the intervention) (26.4% versus 28.0%, p = 0.775) or in the cumulative survival function of relapse (χ2 = 0.16, p = 0.689). At the end of the intervention, patients with money control had lower levels of gambling severity and comorbid psychopathology. The benefits of money control as a stimulus control during the CBT highlight the need to design intervention programs with reliable adherence strategies addressed to achieve complete abstinence from the gambling activities. Personalized interventions for GD should identify patients with higher needs of stimulus control training.

Keywords

Cognitive behavioral therapy Dropout Gambling disorder Money control Outcome 

Notes

Acknowledgments

We thank the CERCA Programme/Generalitat de Catalunya for institutional support.

Funding Information

This manuscript and research were supported by grants from the Ministerio de Economía y Competitividad (PSI2015–68701-R), Instituto de Salud Carlos III (ISCIII) (FIS PI14/00290 and PI17/01167) and cofunded by FEDER funds /European Regional Development Fund (ERDF), a way to build Europe. CIBERobn and CIBERSAM are both initiatives of ISCIII. This research was partially funded by the Delegación del Gobierno para el Plan Nacional sobre Drogas (2017I067) and received the support of the Secretariat for Universities and Research of the Ministry of Business and Knowledge of the Government of Catalonia. TMM, CVA and MLM are supported by a predoctoral Grant of the Ministerio de Educación, Cultura y Deporte (FPU16/02087; FPU16/01453; FPU15/02911). HLG is supported by the Beatriu de Pinos program of the Secretariat for Universities and Research of the Department of Business and Knowledge of the Government of Catalonia (grant number 2017 BP00035).

Compliance with Ethical Standards

Conflict of Interest

All authors declare that they have no conflict of interest.

Disclaimer

The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Ethics

All procedures followed were in accordance with the ethical standards of the Ethics Committee of the Bellvitge University Hospital (approval reference of the project: PR338/17), and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

References

  1. Aalen, O. O., Borgan, O., & Gjessing, H. K. (2008). Survival and event history analysis: a process point of view. New York: Springer.CrossRefGoogle Scholar
  2. Abbott, M., Hodgins, D. C., Bellringer, M., Vandal, A. C., Palmer Du Preez, K., Landon, J., et al. (2018). Brief telephone interventions for problem gambling: a randomized controlled trial. Addiction, 113(5), 883–895.  https://doi.org/10.1111/add.14149.CrossRefPubMedGoogle Scholar
  3. American Psychiatric Association. (2010). Diagnostic and statistical manual of mental disorders (Fourth Edition-Rev) (4th Rev). Washington, DC: American Psychiatric Association.Google Scholar
  4. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (fifth edition) (5th ed.). Washington D.C: Author.CrossRefGoogle Scholar
  5. Auer, M., & Griffiths, M. D. (2013). Voluntary limit setting and player choice in most intense online gamblers: an empirical study of gambling behaviour. Journal of Gambling Studies, 29(4), 647–660.  https://doi.org/10.1007/s10899-012-9332-y.CrossRefPubMedGoogle Scholar
  6. Auer, M., & Griffiths, M. D. (2016). Personalized behavioral feedback for online gamblers: a real world empirical study. Frontiers in Psychology, 7, 1875.  https://doi.org/10.3389/fpsyg.2016.01875.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Auer, M., Hopfgartner, N., & Griffiths, M. D. (2018). The effect of loss-limit reminders on gambling behavior: a real-world study of Norwegian gamblers. Journal of Behavioral Addictions, 7(4), 1056–1067.  https://doi.org/10.1556/2006.7.2018.106.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buth, S., Wurst, F. M., Thon, N., Lahusen, H., & Kalke, J. (2017). Comparative analysis of potential risk factors for at-risk gambling, problem gambling and gambling disorder among current gamblers-results of the Austrian representative survey 2015. Frontiers in Psychology, 8, 2188.  https://doi.org/10.3389/fpsyg.2017.02188.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caillon, J., Grall-Bronnec, M., Perrot, B., Leboucher, J., Donnio, Y., Romo, L., & Challet-Bouju, G. (2019). Effectiveness of at-risk gamblers’ temporary self-exclusion from internet gambling sites. Journal of Gambling Studies, 35(2), 601–615.  https://doi.org/10.1007/s10899-018-9782-y.CrossRefPubMedGoogle Scholar
  10. Calado, F., & Griffiths, M. D. (2016). Problem gambling worldwide: an update and systematic review of empirical research (2000–2015). Journal of Behavioral Addictions, 5(4), 592–613.  https://doi.org/10.1556/2006.5.2016.073.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Calado, F., Alexandre, J., & Griffiths, M. D. (2017). Prevalence of adolescent problem gambling: a systematic review of recent research. Journal of Gambling Studies, 33(2), 397–424.  https://doi.org/10.1007/s10899-016-9627-5.CrossRefPubMedGoogle Scholar
  12. Carlbring, P., & Smit, F. (2008). Randomized trial of internet-delivered self-help with telephone support for pathological gamblers. Journal of Consulting and Clinical Psychology, 76(6), 1090–1094.  https://doi.org/10.1037/a0013603.CrossRefPubMedGoogle Scholar
  13. Chebli, J.-L., Blaszczynski, A., & Gainsbury, S. M. (2016). Internet-based interventions for addictive behaviours: a systematic review. Journal of Gambling Studies, 32(4), 1279–1304.  https://doi.org/10.1007/s10899-016-9599-5.CrossRefPubMedGoogle Scholar
  14. Cloninger, C. R., Przybeck, T. R., Syrakic, D. M., & Wetzel, R. D. (1994). The temperament and character inventory (TCI). A guide to its development and use. Washington University: Center for Psychobiology of Personality.Google Scholar
  15. Cowlishaw, S., Merkouris, S., Dowling, N., Anderson, C., Jackson, A., & Thomas, S. (2012). Psychological therapies for pathological and problem gambling. Cochrane Database of Systematic Reviews, 11, CD008937.  https://doi.org/10.1002/14651858.CD008937.pub2.CrossRefPubMedGoogle Scholar
  16. Cunningham, J. A., Hodgins, D. C., Toneatto, T., & Murphy, M. (2012). A randomized controlled trial of a personalized feedback intervention for problem gamblers. PLoS One, 7(2), e31586.  https://doi.org/10.1371/journal.pone.0031586.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cunningham, J. A. (2014). Intervention adherence is related to participant retention: implications for research. Journal of Medical Internet Research, 16(5):e133.  https://doi.org/10.2196/jmir.2948 CrossRefGoogle Scholar
  18. Dar, R., Stronguin, F., Marouani, R., Krupsky, M., & Frenk, H. (2005). Craving to smoke in orthodox Jewish smokers who abstain on the Sabbath: a comparison to a baseline and a forced abstinence workday. Psychopharmacology, 183(3), 294–299.  https://doi.org/10.1007/s00213-005-0192-3.CrossRefPubMedGoogle Scholar
  19. Dar, R., Rosen-Korakin, N., Shapira, O., Gottlieb, Y., & Frenk, H. (2010). The craving to smoke in flight attendants: relations with smoking deprivation, anticipation of smoking, and actual smoking. Journal of Abnormal Psychology, 119(1), 248–253.  https://doi.org/10.1037/a0017778.CrossRefPubMedGoogle Scholar
  20. Derogatis, L. R. (1994). SCL-90-R: Symptom Checklist-90-R. administration, scoring and procedures manual—II for the revised version. Towson: Clinical Psychometric Research.Google Scholar
  21. Diskin, K. M., & Hodgins, D. C. (2009). A randomized controlled trial of a single session motivational intervention for concerned gamblers. Behaviour Research and Therapy, 47(5), 382–388.  https://doi.org/10.1016/j.brat.2009.01.018.CrossRefPubMedGoogle Scholar
  22. Dupont, W. D. (2009). Statistical modeling for biomedical researchers: a simple introduction to the analysis of complex data, second edition. In Statistical modeling for biomedical researchers: a simple introduction to the analysis of complex data.  https://doi.org/10.1017/CBO9780511575884.
  23. Echeburúa, E., Báez, C., Fernández, J., & Páez, D. (1994). Cuestionario de juego patológico de south oaks (SOGS): Validación española (south oaks gambling screen (SOGS): Spanish validation). Análisis de Modificación de Conducta, 20, 769–791.Google Scholar
  24. Finner, H. (1993). On a monotonicity problem in step-down multiple test procedures. Journal of the American Statistical Association, 88, 920–923.  https://doi.org/10.1080/01621459.1993.10476358.CrossRefGoogle Scholar
  25. Gainsbury, S. M., Abarbanel, B. L. L., Philander, K. S., & Butler, J. V. (2018). Strategies to customize responsible gambling messages: a review and focus group study. BMC Public Health, 18(1), 1381.  https://doi.org/10.1186/s12889-018-6281-0.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ginley, M. K., Rash, C. J., & Petry, N. M. (2019). Psychological interventions in gambling disorders. In A. Heinz, N. Romanczuk-Sieferth, & M. N. Potenza (Eds.), Gambling disorder (pp. 181–194). Switzerland: Springer.CrossRefGoogle Scholar
  27. Giroux, I., Goulet, A., Mercier, J., Jacques, C., & Bouchard, S. (2017). Online and mobile interventions for problem gambling, alcohol, and drugs: a systematic review. Frontiers in Psychology, 8, 954.  https://doi.org/10.3389/fpsyg.2017.00954.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gonzalez De Rivera, J. L., Derogatis, L. R., De las Cuevas, C., Gracia Marco, R., Rodríguez-Pulido, F., Henry-Benitez, M., & Monterrey, A. (1989). The Spanish version of the SCL-90-R. Normative data in the general population. Towson: Clinical Psychometric Research.Google Scholar
  29. Grant, J. E., & Kim, S. W. (2006). Medication management of pathological gambling. Minnesota Medicine, 89(9), 44–48 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17024925.PubMedPubMedCentralGoogle Scholar
  30. Gupta, S. (2011). Intention-to-treat concept: A review. Perspectives in Clinical Research, 2(3), 109–112.  https://doi.org/10.4103/2229-3485.83221.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gutiérrez-Zotes, J. A., Bayón, C., Montserrat, C., Valero, J., Labad, A., Cloninger, C. R., & Fernández-Aranda, F. (2004). Temperament and character inventory revised (TCI-R). Standardization and normative data in a general population sample. Actas Españolas de Psiquiatría, 32(1), 8–15 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14963776.PubMedGoogle Scholar
  32. Hing, N., Sproston, K., Tran, K., & Russell, A. M. T. (2017). Gambling responsibly: who does it and to what end? Journal of Gambling Studies, 33(1), 149–165.  https://doi.org/10.1007/s10899-016-9615-9.CrossRefPubMedGoogle Scholar
  33. Hodgins, D., & Holub, A. (2007). Treatment of pathological gambling. In G. Smith, D. Hodgins, & R. Williams (Eds.), Research and measurement issues in gambling studies (pp. 372–399). Toronto: Elsevier.Google Scholar
  34. Hollingshead, A. B. (2011). Four factor index of social status. Yale Journal of Sociology, 8, 21–51.Google Scholar
  35. Horvitz-Lennon, M., O’Malley, A. J., Frank, R. G., & Normand, S.-L. T. (2005). Improving traditional intention-to-treat analyses: a new approach. Psychological Medicine, 35(7), 961–970 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16045063.CrossRefGoogle Scholar
  36. Jiménez-Murcia, S., Stinchfield, R., Alvarez-Moya, E., Jaurrieta, N., Bueno, B., Granero, R., Aymamí, M. N., Gómez-Peña, M., Martínez-Giménez, R., Fernández-Aranda, F., & Vallejo, J. (2009). Reliability, validity, and classification accuracy of a Spanish translation of a measure of DSM-IV diagnostic criteria for pathological gambling. Journal of Gambling Studies, 25(1), 93–104.  https://doi.org/10.1007/s10899-008-9104-x.CrossRefPubMedGoogle Scholar
  37. Keen, B., Blaszczynski, A., & Anjoul, F. (2017). Systematic review of empirically evaluated school-based gambling education programs. Journal of Gambling Studies, 33(1), 301–325.  https://doi.org/10.1007/s10899-016-9641-7.CrossRefPubMedGoogle Scholar
  38. Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137–152.  https://doi.org/10.1037/a0028086.CrossRefPubMedGoogle Scholar
  39. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): a new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144(9), 1184–1188.  https://doi.org/10.1176/ajp.144.9.1184.CrossRefPubMedGoogle Scholar
  40. Marlatt, G. A. (1996). Taxonomy of high-risk situations for alcohol relapse: evolution and development of a cognitive-behavioral model. Addiction, 91 Suppl, S37–S49 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8997780.CrossRefGoogle Scholar
  41. Merkouris, S. S., Thomas, S. A., Browning, C. J., & Dowling, N. A. (2016). Predictors of outcomes of psychological treatments for disordered gambling: a systematic review. Clinical Psychology Review, 48, 7–31.  https://doi.org/10.1016/j.cpr.2016.06.004.CrossRefPubMedGoogle Scholar
  42. Mostazir, M., Taylor, R. S., Henley, W., & Watkins, E. (2019). An overview of statistical methods for handling nonadherence to intervention protocol in randomized control trials: a methodological review. Journal of Clinical Epidemiology, 108, 121–131.  https://doi.org/10.1016/j.jclinepi.2018.12.002.CrossRefPubMedGoogle Scholar
  43. Nowak, D. E. (2018). A meta-analytical synthesis and examination of pathological and problem gambling rates and associated moderators among college students, 1987-2016. Journal of Gambling Studies, 34(2), 465–498.  https://doi.org/10.1007/s10899-017-9726-y.CrossRefPubMedGoogle Scholar
  44. Pallesen, S., Mitsem, M., Kvale, G., Johnsen, B.-H., & Molde, H. (2005). Outcome of psychological treatments of pathological gambling: a review and meta-analysis. Addiction, 100(10), 1412–1422.  https://doi.org/10.1111/j.1360-0443.2005.01204.x.CrossRefPubMedGoogle Scholar
  45. Pallesen, S., Molde, H., Arnestad, H. M., Laberg, J. C., Skutle, A., Iversen, E., Støylen, I. J., Kvale, G., & Holsten, F. (2007). Outcome of pharmacological treatments of pathological gambling: a review and meta-analysis. Journal of Clinical Psychopharmacology, 27(4), 357–364.  https://doi.org/10.1097/jcp.013e3180dcc304d.CrossRefPubMedGoogle Scholar
  46. Parke, A., Griffiths, M., Pattinson, J., & Keatley, D. (2018). Age-related physical and psychological vulnerability as pathways to problem gambling in older adults. Journal of Behavioral Addictions, 7(1), 137–145.  https://doi.org/10.1556/2006.7.2018.18.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Peter, S. C., Brett, E. I., Suda, M. T., Leavens, E. L. S., Miller, M. B., Leffingwell, T. R., Whelan, J. P., & Meyers, A. W. (2019). A meta-analysis of brief personalized feedback interventions for problematic gambling. Journal of Gambling Studies, 35(2), 447–464.  https://doi.org/10.1007/s10899-018-09818-9.CrossRefPubMedGoogle Scholar
  48. Petry, N. M. (2005). Pathological gambling: etiology, comorbidity and treatment. Washington D.C.: American Psychological Association.CrossRefGoogle Scholar
  49. Petry, N. M., Ginley, M. K., & Rash, C. J. (2017). A systematic review of treatments for problem gambling. Psychology of Addictive Behaviors, 31(8), 951–961.  https://doi.org/10.1037/adb0000290.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pickering, D., Keen, B., Entwistle, G., & Blaszczynski, A. (2018). Measuring treatment outcomes in gambling disorders: a systematic review. Addiction, 113(3), 411–426.  https://doi.org/10.1111/add.13968.CrossRefPubMedGoogle Scholar
  51. Rizeanu, S. (2015). Pathological gambling treatment - review. Procedia - Social and Behavioral Sciences, 13, 613–618.  https://doi.org/10.1016/j.sbspro.2015.03.114.CrossRefGoogle Scholar
  52. Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Reviews, 18(3), 247–291.  https://doi.org/10.1016/01650173(93)90013-P.CrossRefPubMedGoogle Scholar
  53. Robinson, T. E., & Berridge, K. C. (2008). Review. The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1507), 3137–3146.  https://doi.org/10.1098/rstb.2008.0093.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rodda, S. N., Bagot, K. L., Cheetham, A., Hodgins, D. C., Hing, N., & Lubman, D. I. (2018). Types of change strategies for limiting or reducing gambling behaviors and their perceived helpfulness: a factor analysis. Psychology of Addictive Behaviors, 32(6), 679–688.  https://doi.org/10.1037/adb0000393.CrossRefPubMedGoogle Scholar
  55. Rodda, S. N., Bagot, K. L., Manning, V., & Lubman, D. I. (2019). “It was terrible. I didn’t set a limit”: proximal and distal prevention strategies for reducing the risk of a bust in gambling venues. Journal of Gambling Studies, in press, 35, 1407–1421.  https://doi.org/10.1007/s10899-019-09829-0.CrossRefPubMedGoogle Scholar
  56. Saunders, J. B., Hao, W., Long, J., King, D. L., Mann, K., Fauth-Bühler, M., Rumpf, H. J., Bowden-Jones, H., Rahimi-Movaghar, A., Chung, T., Chan, E., Bahar, N., Achab, S., Lee, H. K., Potenza, M., Petry, N., Spritzer, D., Ambekar, A., Derevensky, J., Griffiths, M. D., Pontes, H. M., Kuss, D., Higuchi, S., Mihara, S., Assangangkornchai, S., Sharma, M., Kashef, A. E., Ip, P., Farrell, M., Scafato, E., Carragher, N., & Poznyak, V. (2017). Gaming disorder: its delineation as an important condition for diagnosis, management, and prevention. Journal of Behavioral Addictions, 6(3), 271–279.  https://doi.org/10.1556/2006.6.2017.039.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Stata-Corp. (2019). Stata statistical software: Release 16. College Station: StataCorp LLC.Google Scholar
  58. Steyerberg, E. W., Harrell, F. E., Borsboom, G. J., Eijkemans, M. J., Vergouwe, Y., & Habbema, J. D. (2001). Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. Journal of Clinical Epidemiology, 54(8), 774–781.  https://doi.org/10.1016/S0895-4356(01)00341-9.CrossRefPubMedGoogle Scholar
  59. Stinchfield, R. (2003). Reliability, validity, and classification accuracy of a measure of DSM-IV diagnostic criteria for pathological gambling. American Journal of Psychiatry, 160(1), 180–182.  https://doi.org/10.1176/appi.ajp.160.1.180.CrossRefPubMedGoogle Scholar
  60. Subramaniam, M., Wang, P., Soh, P., Vaingankar, J. A., Chong, S. A., Browning, C. J., & Thomas, S. A. (2015). Prevalence and determinants of gambling disorder among older adults: a systematic review. Addictive Behaviors, 41, 199–209.  https://doi.org/10.1016/j.addbeh.2014.10.007.CrossRefPubMedGoogle Scholar
  61. Ten Have, T. R., Normand, S.-L. T., Marcus, S. M., Brown, C. H., Lavori, P., & Duan, N. (2008). Intent-to-treat vs. non-intent-to-treat analyses under treatment non-adherence in mental health randomized trials. Psychiatric Annals, 38(12), 772–783.  https://doi.org/10.3928/00485713-20081201-10.CrossRefPubMedPubMedCentralGoogle Scholar
  62. van der Maas, M., Shi, J., Elton-Marshall, T., Hodgins, D. C., Sanchez, S., Lobo, D. S., Hagopian, S., & Turner, N. E. (2019). Internet-based interventions for problem gambling: scoping review. JMIR Mental Health, 6(1), e65.  https://doi.org/10.2196/mental.9419.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Roser Granero
    • 1
    • 2
  • Alex Blaszczynski
    • 3
  • Fernando Fernández-Aranda
    • 1
    • 4
    • 5
  • Mónica Gómez-Peña
    • 4
  • Laura Moragas
    • 4
  • Neus Aymamí
    • 4
  • Amparo del Pino-Gutiérrez
    • 4
    • 6
  • Ester Codina
    • 4
    • 6
  • Teresa Mena-Moreno
    • 4
  • Cristina Vintró-Alcáraz
    • 4
  • María Lozano-Madrid
    • 4
  • Zaida Agüera
    • 1
    • 4
  • Hibai López-González
    • 4
  • Eduardo Valenciano-Mendoza
    • 4
  • Bernat Mora
    • 4
  • Lucero Munguía
    • 4
  • Giulia Testa
    • 4
  • Isabel Baenas-Soto
    • 4
  • José M. Menchón
    • 4
    • 5
    • 7
  • Susana Jiménez-Murcia
    • 1
    • 4
    • 5
    Email author
  1. 1.Ciber Fisiopatología Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos IIIMadridSpain
  2. 2.Department of Psychobiology and MethodologyAutonomous University of BarcelonaBarcelonaSpain
  3. 3.Faculty of Science, Brain Mind Centre, School of PsychologyThe University of SydneySydneyAustralia
  4. 4.Department of PsychiatryUniversity Hospital of Bellvitge-IDIBELLBarcelonaSpain
  5. 5.Department of Clinical Sciences, School of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
  6. 6.Department of Public Health, Mental Health and Perinatal Nursing, School of NursingUniversity of BarcelonaBarcelonaSpain
  7. 7.Ciber Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain

Personalised recommendations