The Methamphetamine-Associated Psychosis Spectrum: a Clinically Focused Review

  • Shalini ArunogiriEmail author
  • Rebecca McKetin
  • Antonio Verdejo-Garcia
  • Dan I. Lubman
Original Article


Methamphetamine use is a global concern, and methamphetamine-associated psychosis (MAP) is a particular harm resulting from regular use of the drug that causes significant distress and burden on health and social services. This paper aims to provide a clinically focussed and up-to-date overview of the prevalence, risk factors, and clinical and cognitive features of MAP. The prevalence of MAP ranges between 15 and 30% in recreational settings and up to 60% in some inpatient treatment settings, with up to a third of people with MAP later diagnosed with persistent psychotic disorders. The frequency of methamphetamine use and severity of dependence are the most consistent risk factors for MAP, but other predictors such as genetic vulnerability, a family history of psychotic illness, or trauma also play a role. People with MAP can vary in their presentation, from brief delusional experiences, to persistent psychosis characterised by first-rank symptoms and cognitive impairment. Contemporary conceptualisations of MAP need to incorporate this spectrum of clinical presentations in order to inform clinical decision-making, service provision, and research directions.


Methamphetamine Amphetamine Psychosis Substance-induced psychosis Dual diagnosis Cognition Genetics 


Compliance with Ethical Standards

Conflict of Interest

Authors RM and AVG declare that they have no conflict of interest. Author SA was supported by an Australian National Health and Medical Research Council (NHMRC) postgraduate scholarship (Grant No. 1093778). Author DL has provided consultancy advice to Lundbeck and Indivior and has received travel support and speaker honoraria from Astra Zeneca, Bristol Myers Squibb, Janssen, Lundbeck, Servier, and Shire.


  1. Alderson, H., Semple, D., Blayney, C., Queirazza, F., Chekuri, V., & Lawrie, S. (2017). Risk of transition to schizophrenia following first admission with substance-induced psychotic disorder: a population-based longitudinal cohort study. Psychological Medicine, 1–8.Google Scholar
  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub.Google Scholar
  3. Angrist, B. M., & Gershon, S. (1970). The phenomenology of experimentally induced amphetamine psychosis: preliminary observations. Biological Psychiatry.Google Scholar
  4. Arunogiri, S., Foulds, J. A., McKetin, R., & Lubman, D. I. (2018). A systematic review of risk factors for methamphetamine-associated psychosis. Australian & New Zealand Journal of Psychiatry, 0004867417748750.Google Scholar
  5. Ashok, A. H., Mizuno, Y., Volkow, N. D., & Howes, O. D. (2017). Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis. JAMA Psychiatry, 74(5), 511–519.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bell, D. (1965). Comparison of amphetamine psychosis and schizophrenia. The British Journal of Psychiatry, 111(477), 701–707.CrossRefPubMedGoogle Scholar
  7. Bell, D. S. (1973). The experimental reproduction of amphetamine psychosis. Archives of General Psychiatry, 29(1), 35–40.CrossRefPubMedGoogle Scholar
  8. Bouchard, V., Lecomte, T., & Mueser, K. T. (2013). Could cognitive deficits help distinguish methamphetamine-induced psychosis from a psychotic disorder with substance abuse? Mental Health and Substance Use, 6(2), 101–110.CrossRefGoogle Scholar
  9. Bousman, C. A., McKetin, R., Burns, R., Woods, S. P., Morgan, E. E., Atkinson, J. H., Grant, I. (2014). Typologies of positive psychotic symptoms in methamphetamine dependence. The American Journal on Addictions.Google Scholar
  10. Bramness, J. G., & Rognli, E. B. (2016). Psychosis induced by amphetamines. Current Opinion in Psychiatry, 29(4), 236–241.CrossRefPubMedGoogle Scholar
  11. Breen, M., Uhlmann, A., Nday, C., Glatt, S., Mitt, M., Metsalpu, A., et al. (2016). Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report. Translational Psychiatry, 6(5), e802.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Callaghan, R. C., Cunningham, J. K., Allebeck, P., Arenovich, T., Sajeev, G., Remington, G., & Kish, S. J. (2012). Methamphetamine use and schizophrenia: a population-based cohort study in California. American Journal of Psychiatry, 169(4), 389–396.CrossRefPubMedGoogle Scholar
  13. Chen, C. K., Lin, S. K., Sham, P. C., Ball, D., Loh el, W., & Murray, R. M. (2005). Morbid risk for psychiatric disorder among the relatives of methamphetamine users with and without psychosis. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 136B(1), 87–91.CrossRefGoogle Scholar
  14. Chen, C.-K., Lin, S.-K., Chen, Y.-C., Huang, M.-C., Chen, T.-T., Ree, S. C., & Wang, L.-J. (2015). Persistence of psychotic symptoms as an indicator of cognitive impairment in methamphetamine users. Drug and Alcohol Dependence, 148, 158–164.CrossRefPubMedGoogle Scholar
  15. Curran, C., Byrappa, N., & Mcbride, A. (2004). Stimulant psychosis: systematic review. British Journal of Psychiatry, 185(3), 196–204.CrossRefPubMedGoogle Scholar
  16. Dean, A. C., Groman, S. M., Morales, A. M., & London, E. D. (2013). An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology, 38(2), 259–274.CrossRefPubMedGoogle Scholar
  17. Ding, Y., Lin, H., Zhou, L., Yan, H., & He, N. (2014). Adverse childhood experiences and interaction with methamphetamine use frequency in the risk of methamphetamine-associated psychosis. Drug and Alcohol Dependence, 142, 295–300.CrossRefPubMedGoogle Scholar
  18. Ezzatpanah, Z., Shariat, S. V., & Tehrani-Doost, M. (2014). Cognitive functions in methamphetamine induced psychosis compared to schizophrenia and normal subjects. Iranian journal of psychiatry, 9(3), 152–157.PubMedPubMedCentralGoogle Scholar
  19. Garety, P. A., Bebbington, P., Fowler, D., Freeman, D., & Kuipers, E. (2007). Implications for neurobiological research of cognitive models of psychosis: a theoretical paper. Psychological Medicine, 37(10), 1377–1391.CrossRefPubMedGoogle Scholar
  20. Gowin, J. L., Stewart, J. L., May, A. C., Ball, T. M., Wittmann, M., Tapert, S. F., & Paulus, M. P. (2014). Altered cingulate and insular cortex activation during risk-taking in methamphetamine dependence: losses lose impact. Addiction, 109(2), 237–247.CrossRefPubMedGoogle Scholar
  21. Grant, K. M., LeVan, T. D., Wells, S. M., Li, M., Stoltenberg, S. F., Gendelman, H. E., & Bevins, R. A. (2012). Methamphetamine-associated psychosis. Journal of Neuroimmune Pharmacology, 7(1), 113–139.CrossRefPubMedGoogle Scholar
  22. Hides, L., Dawe, S., McKetin, R., Kavanagh, D. J., Young, R. M., Teesson, M., & Saunders, J. B. (2015). Primary and substance-induced psychotic disorders in methamphetamine users. Psychiatry Research, 226(1), 91–96.CrossRefPubMedGoogle Scholar
  23. Howes, O., McCutcheon, R., & Stone, J. (2015). Glutamate and dopamine in schizophrenia: an update for the 21st century. Journal of Psychopharmacology, 29(2), 97–115.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jacobs, E., Fujii, D., Schiffman, J., & Bello, I. (2008). An exploratory analysis of neurocognition in methamphetamine-induced psychotic disorder and paranoid schizophrenia. Cognitive and Behavioral Neurology, 21(2), 98–103.CrossRefPubMedGoogle Scholar
  25. Janowsky, D. S., & Risch, C. (1979). Amphetamine psychosis and psychotic symptoms. Psychopharmacology, 65(1), 73–77.CrossRefPubMedGoogle Scholar
  26. Kishimoto, M., Ujike, H., Motohashi, Y., Tanaka, Y., Okahisa, Y., Kotaka, T., & Komiyama, T. (2008). The dysbindin gene (DTNBP1) is associated with methamphetamine psychosis. Biological Psychiatry, 63(2), 191–196.CrossRefPubMedGoogle Scholar
  27. Kittirattanapaiboon, P., Mahatnirunkul, S., Booncharoen, H., Thummawomg, P., Dumrongchai, U., & Chutha, W. (2010). Long-term outcomes in methamphetamine psychosis patients after first hospitalisation. Drug and Alcohol Review, 29(4), 456–461.CrossRefPubMedGoogle Scholar
  28. Mathias, S., Lubman, D. I., & Hides, L. (2008). Substance-induced psychosis: a diagnostic conundrum. Journal of Clinical Psychiatry, 69(3), 358–367.CrossRefPubMedGoogle Scholar
  29. McKetin, R. (2018). Methamphetamine psychosis: insights from the past. Addiction.Google Scholar
  30. McKetin, R., McLaren, J., Lubman, D. I., & Hides, L. (2006). The prevalence of psychotic symptoms among methamphetamine users. Addiction, 101(10), 1473–1478.CrossRefPubMedGoogle Scholar
  31. McKetin, R., Hickey, K., Devlin, K., & Lawrence, K. (2010). The risk of psychotic symptoms associated with recreational methamphetamine use. Drug and Alcohol Review, 29(4), 358–363.CrossRefPubMedGoogle Scholar
  32. McKetin, R., Lubman, D. I., Lee, N. M., Ross, J. E., & Slade, T. N. (2011). Major depression among methamphetamine users entering drug treatment programs. Medical Journal of Australia, 195(3), S51–S55.PubMedGoogle Scholar
  33. McKetin, R., Lubman, D. I., Baker, A. L., Dawe, S., & Ali, R. L. (2013). Dose-related psychotic symptoms in chronic methamphetamine users: evidence from a prospective longitudinal study. JAMA Psychiatry, 70(3), 319–324.CrossRefPubMedGoogle Scholar
  34. McKetin, R., Dawe, S., Burns, R. A., Hides, L., Kavanagh, D. J., Teesson, M., & Saunders, J. B. (2016a). The profile of psychiatric symptoms exacerbated by methamphetamine use. Drug and Alcohol Dependence, 161, 104–109.CrossRefPubMedGoogle Scholar
  35. McKetin, R., Gardner, J., Baker, A. L., Dawe, S., Ali, R., Voce, A., & Lubman, D. I. (2016b). Correlates of transient versus persistent psychotic symptoms among dependent methamphetamine users. Psychiatry Research, 238, 166–171.CrossRefPubMedGoogle Scholar
  36. McKetin, R., Baker, A. L., Dawe, S., Voce, A., & Lubman, D. I. (2017a). Differences in the symptom profile of methamphetamine-related psychosis and primary psychotic disorders. Psychiatry Research, 251, 349–354.CrossRefPubMedGoogle Scholar
  37. McKetin, R., Degenhardt, L., Shanahan, M., Baker, A. L., Lee, N. K., & Lubman, D. I. (2017b). Health service utilisation attributable to methamphetamine use in Australia: patterns, predictors and national impact. Drug and Alcohol Review.Google Scholar
  38. Medhus, S., Rognli, E. B., Gossop, M., Holm, B., Mørland, J., & Bramness, J. G. (2015). Amphetamine-induced psychosis: transition to schizophrenia and mortality in a small prospective sample. The American Journal on Addictions, 24(7), 586–589.CrossRefPubMedGoogle Scholar
  39. Niemi-Pynttäri, J. A., Sund, R., Putkonen, H., Vorma, H., Wahlbeck, K., & Pirkola, S. P. (2013). Substance-induced psychoses converting into schizophrenia: a register-based study of 18,478 Finnish inpatient cases. Journal of Clinical Psychiatry, 74(1), 94–99.CrossRefGoogle Scholar
  40. van Os, J., Kenis, G., & Rutten, B. P. (2010). The environment and schizophrenia. Nature, 468(7321), 203–212.CrossRefPubMedGoogle Scholar
  41. Panenka, W. J., Procyshyn, R. M., Lecomte, T., MacEwan, G. W., Flynn, S. W., Honer, W. G., & Barr, A. M. (2013). Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug and Alcohol Dependence, 129(3), 167–179.CrossRefPubMedGoogle Scholar
  42. Papaleo, F., Yang, F., Garcia, S., Chen, J., Lu, B., Crawley, J., & Weinberger, D. (2012). Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Molecular Psychiatry, 17(1), 85–98.CrossRefPubMedGoogle Scholar
  43. Paparelli, A., Di Forti, M., Morrison, P. D., & Murray, R. M. (2011). Drug-induced psychosis: how to avoid star gazing in schizophrenia research by looking at more obvious sources of light. Frontiers in Behavioral Neuroscience, 5.Google Scholar
  44. Paulus, M. P., Tapert, S. F., & Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Archives of General Psychiatry, 62(7), 761–768.CrossRefPubMedGoogle Scholar
  45. Rognli, E. B., & Bramness, J. G. (2015). Understanding the relationship between amphetamines and psychosis. Current Addiction Reports, 2(4), 285–292.CrossRefGoogle Scholar
  46. Ross, R. G. (2006). Psychotic and manic-like symptoms during stimulant treatment of attention deficit hyperactivity disorder. American Journal of Psychiatry, 163(7), 1149–1152.CrossRefPubMedGoogle Scholar
  47. Sato, M., Numachi, Y., & Hamamura, T. (1992). Relapse of paranoid psychotic state in methamphetamine model of schizophrenia. Schizophrenia Bulletin, 18(1), 115–122.CrossRefPubMedGoogle Scholar
  48. Scott, J. C., Woods, S. P., Matt, G. E., Meyer, R. A., Heaton, R. K., Atkinson, J. H., & Grant, I. (2007). Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychology Review, 17(3), 275–297.CrossRefPubMedGoogle Scholar
  49. Scott, N., Caulkins, J. P., Ritter, A., Quinn, C., & Dietze, P. (2015). High-frequency drug purity and price series as tools for explaining drug trends and harms in Victoria, Australia. Addiction, 110(1), 120–128.CrossRefPubMedGoogle Scholar
  50. Sekine, Y., Iyo, M., Ouchi, Y., Matsunaga, T., Tsukada, H., Okada, H., & Mori, N. (2001). Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. American Journal of Psychiatry, 158(8), 1206–1214.CrossRefPubMedGoogle Scholar
  51. Sekine, Y., Minabe, Y., Ouchi, Y., Takei, N., Iyo, M., Nakamura, K., & Yoshikawa, E. (2003). Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. American Journal of Psychiatry, 160(9), 1699–1701.CrossRefPubMedGoogle Scholar
  52. Shelly, J., Uhlmann, A., Sinclair, H., Howells, F. M., Sibeko, G., Wilson, D., & Temmingh, H. (2016). First-rank symptoms in methamphetamine psychosis and schizophrenia. Psychopathology, 49(6), 429–435.CrossRefPubMedGoogle Scholar
  53. Smith, M. J., Barch, D. M., & Csernansky, J. G. (2009). Bridging the gap between schizophrenia and psychotic mood disorders: relating neurocognitive deficits to psychopathology. Schizophrenia Research, 107(1), 69–75.CrossRefPubMedGoogle Scholar
  54. Srisurapanont, M., Ali, R., Marsden, J., Sunga, A., Wada, K., & Monteiro, M. (2003). Psychotic symptoms in methamphetamine psychotic in-patients. International Journal of Neuropsychopharmacology, 6(4), 347–352.CrossRefPubMedGoogle Scholar
  55. Srisurapanont, M., Arunpongpaisal, S., Wada, K., Marsden, J., Ali, R., & Kongsakon, R. (2011). Comparisons of methamphetamine psychotic and schizophrenic symptoms: a differential item functioning analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(4), 959–964.CrossRefPubMedGoogle Scholar
  56. Starzer, M. S. K., Nordentoft, M., & Hjorthøj, C. (2017). Rates and predictors of conversion to schizophrenia or bipolar disorder following substance-induced psychosis. American Journal of Psychiatry.Google Scholar
  57. Sulaiman, A. H., Said, M. A., Habil, M. H., Rashid, R., Siddiq, A., Guan, N. C., & Das, S. (2014). The risk and associated factors of methamphetamine psychosis in methamphetamine-dependent patients in Malaysia. Comprehensive Psychiatry, 55(Suppl 1), S89–S94.CrossRefPubMedGoogle Scholar
  58. United Nations Office on Drugs and Crime. (2016). World drug report 2016. Retrieved fromGoogle Scholar
  59. Wang, L.-J., Lin, S.-K., Chen, Y.-C., Huang, M.-C., Chen, T.-T., Ree, S.-C., & Chen, C.-K. (2016). Differences in clinical features of methamphetamine users with persistent psychosis and patients with schizophrenia. Psychopathology, 49(2), 108–115.CrossRefPubMedGoogle Scholar
  60. Zhang, J.-P., Burdick, K. E., Lencz, T., & Malhotra, A. K. (2010). Meta-analysis of genetic variation in DTNBP1 and general cognitive ability. Biological Psychiatry, 68(12), 1126–1133.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zweben, J. E., Cohen, J. B., Christian, D., Galloway, G. P., Salinardi, M., Parent, D., & Iguchi, M. (2004). Psychiatric symptoms in methamphetamine users. The American Journal on Addictions, 13(2), 181–190.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Turning Point, Eastern HealthRichmondAustralia
  2. 2.Eastern Health Clinical SchoolMonash UniversityBox HillAustralia
  3. 3.National Drug Research Institute (NDRI)Curtin UniversityPerthAustralia
  4. 4.Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityClaytonAustralia

Personalised recommendations