A Multifaceted Analysis of Oxycodone Addiction

  • Meenu Minhas
  • Francesco Leri
Original Article


Oxycodone is an important therapeutic agent in the treatment of pain. However, its excessive use in medical practice, as well as escalating rates of illegal sharing and high potential for abuse, has generated a public health crisis in North America. The objective of this review is to discuss the prevalence, clinical utility, pharmacology, pharmacokinetics/pharmacodynamics, and addictive properties of oxycodone. Oxycodone has an abuse liability that is similar to other opioids, and in some cases, even greater. The introduction to oxycodone use can come from peers at school, during the treatment of pain, or from the black market. Implementing approaches that increase training of doctors in conjunction with more information for patients, as well as employing harm reduction strategies, diversion resistant products, and drug monitoring programs, may help to reduce the risk of oxycodone misuse and abuse.


Oxycodone Addiction Abuse liability Treatment 


Compliance with Ethical Standards

Conflict of Interest

Meenu Minhas and Dr. Francesco Leri declare no conflict of interest.


  1. American Psychiatric Association. (2013). Opioid use disorder. In Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Publishing.Google Scholar
  2. Babalonis, S., Lofwall, M. R., Nuzzo, P. A., Siegel, A. J., & Walsh, S. L. (2013). Abuse liability and reinforcing efficacy of oral tramadol in humans. Drug and Alcohol Dependence, 129, 116–124.PubMedCrossRefGoogle Scholar
  3. Basbaum, A.I., & Jessell, T.M. (2013). Pain. In E.R. Kandel, et al. (Eds.), Principles of neural science (5th ed.). New York: McGraw Hill.Google Scholar
  4. Beardsley, P. M., Aceto, M. D., Cook, C. D., Bowman, E. R., Newman, J. L., & Harris, L. S. (2004). Discriminative stimulus, reinforcing, physical dependence, and antinociceptive effects of oxycodone in mice, rats, and rhesus monkeys. Experimental and Clinical Psychopharmacology, 12(3), 163–172.PubMedCrossRefGoogle Scholar
  5. Bell, J. (2010). The global diversion of pharmaceutical drugs. Addiction, 105(9), 1531–1537.PubMedCrossRefGoogle Scholar
  6. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research. Brain Research Reviews, 28(3), 309–369.PubMedCrossRefGoogle Scholar
  7. Betourne, A., Familiades, J., Lacassagne, L., Halley, H., Cazales, M., Ducommun, B., Lassalle, J. M., Zajac, J. M., & Frances, B. (2008). Decreased motivational properties of morphine in mouse models of cancerous- or inflammatory-chronic pain: implication of supraspinal neuropeptide FF(2) receptors. Neuroscience, 157, 12–21.PubMedCrossRefGoogle Scholar
  8. Butler, S. F., Cassidy, T. A., Chilcoat, H., Black, R. A., Landau, C., Budman, S. H., & Coplan, P. M. (2013). Abuse rates and routes of administration of reformulated extended-release oxycodone: initial findings from a sentinel surveillance sample of individuals assessed for substance abuse treatment. The Journal of Pain, 14(4), 351–358.PubMedCrossRefGoogle Scholar
  9. Campbell, A. T., Kwiatkowski, D., Boughner, E., & Leri, F. (2012). Effect of yohimbine stress on reacquisition of oxycodone seeking in rats. Psychopharmacology, 222(2), 247–255.PubMedCrossRefGoogle Scholar
  10. Canadian Centre on Substance Abuse (CCSA). (2015). Prescription opioids. Ottawa: Canadian Centre on Substance Abuse.  Google Scholar
  11. Carmichael, J. P., & Lee, M. A. (2010). Symptoms of opioid withdrawal syndrome afterswitch from oxycodone to alfentanil. Journal of Pain and Symptom Management, 40(6), e4–e6.Google Scholar
  12. Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111–126.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Centers for Disease Control and Prevention (CDC). (2014). Opioid painkiller prescribing. Retrieved from
  14. Chakravarthy, B., Shah, S., & Lotfipour, S. (2011). Prescription drug monitoring programs and other interventions to combat prescription opioid abuse. Western Journal of Emergency Medicine, 13(5), 422–425.CrossRefGoogle Scholar
  15. Ciccarone, D. (2009). Heroin in brown, black and white: Structural factors and medical consequences in the US heroin market. International Journal of Drug Policy, 20(3), 277–282.PubMedCrossRefGoogle Scholar
  16. Ciccarone, D., Unick, G. J., & Kraus, A. (2009). Impact of South American heroin on the US heroin market 1993–2004. International Journal of Drug Policy, 20(5), 392–401.PubMedCrossRefGoogle Scholar
  17. Cicero, T. J., & Ellis, M. S. (2015). Abuse-deterrent formulations and the prescription opioid abuse epidemic in the United States. JAMA Psychiatry, 72(5), 424.PubMedCrossRefGoogle Scholar
  18. Cicero, T. J., Kurtz, S. P., Surratt, H. L., Ibanez, G. E., Ellis, M. S., Levi-Minzi, M. A., & Inciardi, J. A. (2011). Multiple determinants of specific modes of prescription opioid diversion. Journal of Drug Issues, 41(2), 283–304.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cicero, T. J., Ellis, M. S., & Surratt, H. L. (2012). Effect of abuse-deterrent formulation of OxyContin. The New England Journal of Medicine, 367, 187–189.PubMedCrossRefGoogle Scholar
  20. Cicero, T. J., Ellis, M. S., Surratt, H. L., & Kurtz, S. P. (2014). The changing face of heroin use in the United States. JAMA Psychiatry, 71(7), 821.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Colucci, S. V., Perrino, P. J., Shram, M., Bartlett, C., Wang, Y., & Harris, S. C. (2014). Abuse potential of intravenous oxycodone/naloxone solution in nondependent recreational drug users. Clinical Drug Investigation, 34(6), 421–429.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Comer, S. D., Sullivan, M. A., Whittington, R. A., Vosburg, S. K., & Kowalczyk, W. J. (2008). Abuse liability of prescription opioids compared to heroin in morphine-maintained heroin abusers. Neuropsychopharmacology, 33(5), 1179–1191.PubMedCrossRefGoogle Scholar
  23. Comer, S. D., Sullivan, M. A., Vosburg, S. K., Kowalczyk, W. J., & Houser, J. (2010). Oxycodone: Laboratory study of the relationship between pain and abuse liability. Drug and AlocoholDependence, 109, 130–138.Google Scholar
  24. Comer, S. D., Metz, V. E., Cooper, Z. D., Kowalczyk, W. J., Jones, J. D., Sullivan, M. A., et al. (2013). Comparison of a drug versus money and drug versus drug self-administration choice procedure with oxycodone and morphine in opioid addicts. Behavioural Pharmacology, 24, 504–516.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Coplan, P. M., Kale, H., Sandstrom, L., Landau, C., & Chilcoat, H. D. (2013). Changes in oxycodone and heroin exposures in the National Poison Data System after introduction of extended-release oxycodone with abuse-deterrent characteristics. Pharmacoepidemiology and Drug Safety, 22(12), 1274–1282.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dart, R. C., Surratt, H. L., Cicero, T. J., Parrino, M. W., Severtson, S. G., Bartelson, B. B., & Green, J. L. (2015). Trends in opioid analgesic abuse and mortality in the United States. New England Journal of Medicine, 372(16), 1572–1574.CrossRefGoogle Scholar
  27. Dasgupta, N., Freifeld, C., Brownstein, J. S., Menone, C. M., Surratt, H. L., Poppish, L., et al. (2013). Crowdsourcing black market prices for prescription opioids. Journal of Medical Internet Research, 15(8), e178.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Davis, W. R., & Johnson, B. D. (2008). Prescription opioid use, misuse, and diversion among street drug users in New York City. Drug and Alcohol Dependence, 92(1–3), 267–276.PubMedCrossRefGoogle Scholar
  29. Davis, C. P., Franklin, L. M., Johnson, G. S., & Schrott, L. M. (2010). Prenatal oxycodone exposure impairs spatial learning and/or memory in rats. Behavioural Brain Research, 212(1), 27–34.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dhalla, I. A., Mamdani, M. M., Sivilotti, M. L., Kopp, A., Qureshi, O., & Juurlink, D. N. (2009). Prescribing of opioid analgesics and related mortality before and after the introduction of long-acting oxycodone. CMAJ, 181(12), 891–896.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Drug Enforcement Administration. (2014). Oxycodone. Sprinfield, Virginia: Drug Enforcement Administration.Google Scholar
  32. Edlund, M. J., Steffick, D., Hudson, T., Harris, K. M., & Sullivan, M. (2007). Risk factors for clinically recognized opioid abuse and dependence among veterans using opioids for chronic non-cancer pain. Pain, 129, 355–362.PubMedCrossRefGoogle Scholar
  33. Emery, M. A., Bates, M. L. S., Wellman, P. J., & Eitan, S. (2015). Differential effects of oxycodone, hydrocodone, and morphine on the responses of D2/D3 dopamine receptors. Behavioural Brain Research, 284, 37–41.PubMedCrossRefGoogle Scholar
  34. Emery, M. A., Bates, S., Wellman, P. J., & Eitan, S. (2016). Differential effects of oxycodone, hydrocodone, and morphine on activation levels of signaling molecules. Pain Medicine, 17(5), 908–914.PubMedGoogle Scholar
  35. Enga, R. M., Jackson, A., Damaj, M. I., & Beardsley, P. M. (2016). Oxycodone physical dependence and its oral self-administration in C57BL/6J mice. European Journal of Pharmacology, 789, 75–80.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489.PubMedCrossRefGoogle Scholar
  37. Frank, D., Mateu-Gelabert, P., Guarino, H., Bennett, A., Wendel, T., Jessell, L., & Teper, A. (2015). High risk and little knowledge: overdose experiences and knowledge among young adult nonmedical prescription opioid users. International Journal of Drug Policy, 26(1), 84–91.PubMedCrossRefGoogle Scholar
  38. Gerak, L. R., Galici, R., & France, C. P. (2009). Self-administration of heroin and cocaine in morphine-dependent and morphine-withdrawn rhesus monkeys. Psychopharmacology, 204, 403–411.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gibson, A. E., & Degenhardt, L. J. (2007). Mortality related to pharmacotherapies for opioid dependence: a comparative analysis of coronial records. Drug and Alcohol Review, 26(4), 405–410.PubMedCrossRefGoogle Scholar
  40. Gomes, T., & Juurlink, D. (2016). Opioid use and overdose: what we’ve learned in Ontario. Healthcare Quarterly, 18(4), 8–11.PubMedCrossRefGoogle Scholar
  41. Goodman & Gilman’s. (2001). The Pharmacological Basis of Therapeutics. In J. G. Hardman, L. E. Limbird, & A. G. Gilman (Eds.), (10th ed.). New York: McGraw-Hill.Google Scholar
  42. Goodman & Gilman’s. (2011). The Pharmacological Basis of Therapeutics. In L. L. Brunton, J. S. Lazo, & K. L. Parker (Eds.), (11th ed.). New York: McGraw-Hill.Google Scholar
  43. Gossop, M., Green, L., Phillips, G., & Bradley, B. (1989). Lapse, relapse and survival among opiate addicts after treatment. A prospective follow-up study. The British Journal of Psychiatry, 154, 348–353.PubMedCrossRefGoogle Scholar
  44. Gossop, M., Stewart, D., Browne, N., & Marsden, J. (2002). Factors associated with abstinence, lapse or relapse to heroin use after residential treatment: protective effect of coping responses. Addiction, 97(10), 1259–1267.PubMedCrossRefGoogle Scholar
  45. Gould, T. J. (2010). Addiction and cognition. Addict SciClinPract, 5(2), 4–14.Google Scholar
  46. Grau, L. E., Dasgupta, N., Harvey, A. P., Irwin, K., Givens, A., Kinzly, M. L., & Heimer, R. (2007). Illicit use of opioids: Is OxyContin® a “gateway drug”? The American Journal on Addictions, 16(3), 166–173.PubMedCrossRefGoogle Scholar
  47. Grella, S. L., Levy, A., Campbell, A., Djazayeri, S., Allen, C. P., Goddard, B., & Leri, F. (2011). Oxycodone dose-dependently imparts conditioned reinforcing properties to discrete sensory stimuli in rats. Pharmacological Research, 64(4), 364–370.PubMedCrossRefGoogle Scholar
  48. Gwira, J. A., Wiedeman, C., Dunn, J. R., et al. (2014). High-risk use by patients prescribed opioids for pain and its role in overdose deaths. JAMA Internal Medicine, 174(5), 796–801.CrossRefGoogle Scholar
  49. Hagemeier, N. E., Gray, J. A., & Pack, R. P. (2013). Prescription drug abuse: a comparison of prescriber and pharmacist perspective. Substance Use & Misuse, 48(9), 761–768.CrossRefGoogle Scholar
  50. Harris, S. C., Perrino, P. J., Smith, I., Shram, M. J., Colucci, S. V., Bartlett, C., & Sellers, E. M. (2013). Abuse potential, pharmacokinetics, pharmacodynamics, and safety of intranasallyadministered crushed oxycodone HCl abuse-deterrent controlled-release tablets in recreational opioid users. The Journal of Clinical Pharmacology, 54(4), 468–477.PubMedCrossRefGoogle Scholar
  51. Health Canada. (2017). New measures to inform Canadians of the risks of prescription opioids out for consultation. Retrieved from
  52. Henriksen, G., & Willoch, F. (2008). Imaging of opioid receptors in the central nervous system. Brain, 131(5), 1171–1196.PubMedCrossRefGoogle Scholar
  53. Horvitz, J. C. (2000). Mesolimbocortical and nigrostriatal dopamine responses to salient non- reward events. Neuroscience, 96(4), 651–656.PubMedCrossRefGoogle Scholar
  54. Hughes, A., Williams, M. R., Lipari, R. N., Bose, J., Copello, E. A., &Kroutil, L. A. (2015). Prescription Drug Use and Misuse in the United States: Results from the 2015 National Survey on Drug Use and Health. Retrieved from
  55. Hutchinson, M. R., Lewis, S. S., Coats, B. D., Skyba, D. A., Crysdale, N. Y., Berkelhammer, D. L., Brzeski, A., Northcutt, A., Vietz, C. M., Judd, C. M., et al. (2009). Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411. Brain BehavImmun, 23, 240–250.Google Scholar
  56. Ikemoto, A., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Research Reviews, 31, 6–41.PubMedCrossRefGoogle Scholar
  57. Inciardi, J. A., Surratt, H. L., Cicero, T. J., Rosenblum, A., Ahwah, C., Bailey, J. E., et al. (2010). Prescription drugs purchased through the internet: who are the end users? Drug and Alcohol Dependence, 110(1–2), 21–29.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Johnson, S. W., & North, R. A. (1992). Opioids excite dopamine neurons by hyperpolarization of local interneurons. The Journal of Neuroscience, 12(2), 483–488.PubMedCrossRefGoogle Scholar
  59. Johnston, L. D., O’Malley, P. M., Miech, R. A., Bachman, J. G., & Schulenberg, J. E. (2017). Monitoring the Future national survey results on drug use, 1975-2016: overview, key findings on adolescent drug use. Ann Arbor: Institute for Social Research, The University of Michigan.Google Scholar
  60. Jones, C.M. (2013). Trends in the distribution of selected opioids by state, US, 1999–2011. Paper presented at: National Meeting Safe State Alliance, Baltimore, MD.Google Scholar
  61. Jones, J. D., Vosburg, S. K., Manubay, J. M., & Comer, S. D. (2011). Oxycodone abuse in New York City: characteristics of intravenous and intranasal users. The American Journal on Addictions, 20(3), 190–195.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jones, C. M., Paulozzi, L. J., & Mack, K. A. (2014). Sources of prescription opioid pain relievers by frequency of past-year nonmedical use. JAMA Internal Medicine, 174(5), 802.PubMedCrossRefGoogle Scholar
  63. Kahan, M., Srivastava, A., Wilson, L., Mailis-Gagnon, A., & Midmer, D. (2006). Opioids for managing chronic non-malignant pain. Canadian Family Physician, 52(9), 1091–1096.PubMedPubMedCentralGoogle Scholar
  64. Katz, N., & Fanciullo, G. J. (2002). Role of urine toxicology testing in the management of chronic opioid therapy. The Clinical Journal of Pain, 18, 76–82.CrossRefGoogle Scholar
  65. Katz, D. A., & Hays, L. R. (2004). Adolescent oxycontin abuse. Journal of the American Academy of Child & Adolescent Psychiatry, 43(2), 231–234.CrossRefGoogle Scholar
  66. Keller, C. E., Ashrafioun, L., Neumann, A. M., Klein, J. V., Fox, C. H., & Blondell, R. D. (2012). Practices, perceptions, and concerns of primary care physicians about opioid dependence associated with the treatment of chronic pain. Substance Abuse, 33(2), 103–113.PubMedCrossRefGoogle Scholar
  67. Kirkpatrick, S. L., & Bryant, C. D. (2015). Behavioral architecture of opioid reward and aversion in C57BL/6 substrains. Front BehavNeurosci, 8, 450.Google Scholar
  68. Kokki, H., Rasanen, I., Reinikainen, M., Suhonen, P., Vanamo, K., & Ojanperä, I. (2004). Pharmacokinetics of oxycodone after intravenous, Buccal, intramuscular and gastric administration in children. Clinical Pharmacokinetics, 43(9), 613–622.PubMedCrossRefGoogle Scholar
  69. Kokki, H., Kokki, M., & Sjövall, S. (2012). Oxycodone for the treatment of postoperative pain. Expert OpinPharmacother, 13(7), 1045–1058.CrossRefGoogle Scholar
  70. Kuehn, B. M. (2013). SAMHSA: pain medication abuse a common path to heroin. JAMA, 310(14), 1433.PubMedCrossRefGoogle Scholar
  71. Lalovic, B., Kharasch, E., Hoffer, C., Risler, L., Liu-Chen, L.-Y., & Shen, D. D. (2006). Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. ClinPharmacol Ther, 79, 461–479.Google Scholar
  72. Lankenau, S. E., Teti, M., Silva, K., Bloom, J. J., Harocopos, A., & Treese, M. (2012). Patterns of prescription drug misuse among young injection drug users. Journal of Urban Health, 89(6), 1004–1016.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Le Merrer, J., Becker, J. A., Befort, K., & Kieffer, B. L. (2009). Reward processing by the opioid system in the brain. Physiological Reviews, 89(4), 1379–1412.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Leow, K. P., Wright, A. W., Cramond, T., & Smith, M. T. (1993). Determination of the serum protein binding of oxycodone and morphine using ultrafiltration. Therapeutic Drug Monitoring, 15(5), 440–447.PubMedCrossRefGoogle Scholar
  75. Leri, F., & Burns, B. H. (2005). Ultra-low-dose naltrexone reduces the rewarding potency of oxycodone and relapse vulnerability in rats. Pharmacology, Biochemistry, and Behavior, 82, 252–262.PubMedCrossRefGoogle Scholar
  76. Liu, Y. L., Liang, J. H., Yan, L. D., Su, R. B., Wu, C. F., & Gong, Z. H. (2005). Effects of l-tetrahydropalmatineon locomotor sensitization to oxycodone in mice. Acta Pharmacologica Sinica, 26, 533–538.PubMedCrossRefGoogle Scholar
  77. Mars, S. G., Bourgois, P., Karandinos, G., Montero, F., & Ciccarone, D. (2014). “Every ‘never’ I ever said came true”: transitions from opioid pills to heroin injecting. International Journal of Drug Policy, 25(2), 257–266.PubMedCrossRefGoogle Scholar
  78. Mccabe, S. E., Cranford, J. A., Boyd, C. J., & Teter, C. J. (2007). Motives, diversion and routes of administration associated with nonmedical use of prescription opioids. Addictive Behaviors, 32(3), 562–575.PubMedCrossRefGoogle Scholar
  79. Moradi, M., Esmaeili, S., Shoar, S., & Safari, S. (2012). Use of oxycodone in pain management. Anesthesiology and Pain Medicine, 1(4), 262–264.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Narita, M., Nakamura, A., Ozaki, M., Imai, S., Miyoshi, K., Suzuki, M., & Suzuki, T. (2007). Comparative pharmacological profiles of morphine and oxycodone under a neuropathic pain-like state in mice: evidence for less sensitivity morphine. Neuropsychopharmacology, 33(5), 1097–1112.PubMedCrossRefGoogle Scholar
  81. National Institute on Drug Abuse. (2016). Monitoring the future. Retrieved from
  82. Nielsen, C. K., Ross, F. B., & Smith, M. T. (2000). Incomplete, asymmetric, and route-dependent cross-tolerance between oxycodone and morphine in the dark agouti rat. The Journal of Pharmacology and Experimental Therapeutics, 295, 91–99.PubMedGoogle Scholar
  83. Niikura, K., Ho, A., Kreek, M. J., & Zhang, Y. (2013). Oxycodone-induced conditioned place preference and sensitization of locomotor activity in adolescent and adult mice. PharmacolBiochemBehav, 110, 112–116.Google Scholar
  84. Olkkola, K. T., Kontinen, V. K., Saari, T. I., & Kalso, E. A. (2013). Does the pharmacology of oxycodone justify its increasing use as an analgesic? Trends in Pharmacological Sciences, 34(4), 206–214.PubMedCrossRefGoogle Scholar
  85. Osborne, R., Joel, S., Trew, D., & Slevin, M. (1990). Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. ClinPharmacolTher, 47, 12–19.Google Scholar
  86. Osgood, E. D., Eaton, T. A., Trudeau, J. J., & Katz, N. P. (2012). A brief survey to characterize oxycodone abuse patterns in adolescents enrolled in two substance abuse recovery high schools. The American Journal of Drug and Alcohol Abuse, 38(2), 166–170.PubMedCrossRefGoogle Scholar
  87. Ostlund, S. B., & Balleine, B. W. (2008). On habits and addiction: an associative analysis of compulsive drug seeking. Drug Discov Today Dis Models, 5(4), 235–245.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Patrick, S. W., Schumacher, R. E., Benneyworth, B. D., Krans, E. E., McAllister, J. M., & Davis, M. M. (2012). Neonatal abstinence syndrome and associated health care expenditures: United States, 2000–2009. JAMA, 307(18), 1934–1940.PubMedCrossRefGoogle Scholar
  89. Peacock, A., Bruno, R., Cama, E., Kihas, I., Larance, B., Lintzeris, N., ... Degenhardt, L. (2015). Jurisdictional differences in opioid use, other licit and illicit drug use, and harms associated with substance use among people who tamper with pharmaceutical opioids. Drug and Alcohol Review, 34(6), 611–622.Google Scholar
  90. Perrino, P. J., Colucci, S. V., Apseloff, G., & Harris, S. C. (2013). Pharmacokinetics, tolerability, and safety of intranasal administration of reformulated OxyContin® tablets compared with original OxyContin® tablets in healthy adults. Clinical Drug Investigation, 33(6), 441–449.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pöyhiä, R., & Kalso, E. A. (1992). Antinociceptive effects and central nervous system depression caused by oxycodone and morphine in rats. PharmacolToxicol, 70(2), 125–130.Google Scholar
  92. Rigg, K. K., Kurtz, S. P., & Surratt, H. L. (2012). Patterns of prescription medication diversion among drug dealers. Drugs: Education, Prevention and Policy, 19(2), 145–155.Google Scholar
  93. Riley, J., Eisenberg, E., Müller-Schwefe, G., Drewes, A. M., & Arendt-Nielsen, L. (2008). Oxycodone: a review of its use in the management of pain. Current Medical Research and Opinion, 24(1), 175–192.PubMedCrossRefGoogle Scholar
  94. Rosenblum, A., Parrino, M., Schnoll, S. H., Fong, C., Maxwell, C., Cleland, C. M., et al. (2007). Prescription opioid abuse among enrollees into methadone maintenance treatment. Drug and Alcohol Dependence, 90(1), 64–71.PubMedCrossRefGoogle Scholar
  95. Ross, F. B., & Smith, M. T. (1997). The instrinsic antinociceptive effects of oxycodone appear to be kappa-opioid receptor mediated. Pain, 73, 151–157.PubMedCrossRefGoogle Scholar
  96. Ross, F. B., Wallis, S. C., & Smith, M. T. (2000). Co-administration of sub-antinociceptive doses of oxycodone and morphine produces marked antinociceptive synergy with reduced CNS side-effects in rats. Pain, 84(2), 421–428.PubMedCrossRefGoogle Scholar
  97. Rutten, K., De Vry, J., Robens, A., Tzschentke, T. M., & Van der Kam, E. L. (2011). Dissociation of rewarding, anti-aversive and anti-nociceptive effects of different classes of anti-nociceptives in the rat. European Journal of Pain, 15, 299–305.PubMedCrossRefGoogle Scholar
  98. Ruttenl, K., Vry, J., Robens, A., Tzschentke, T. M., & Kam, E. L. (2011). Dissociation of rewarding, anti-aversive and anti-nociceptive effects of different classes of anti-nociceptives in the rat. European Journal of Pain, 15(3), 299–305.CrossRefGoogle Scholar
  99. Sanchez, V., Carpenter, M. D., Yohn, N. L., & Blendy, J. A. (2016). Long-lasting effects of adolescent oxycodone exposure on reward-related behavior and gene expression in mice. Psychopharmacology, 233(23–24), 3991–4002.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annu Rev Neuroscience, 23, 473–500.CrossRefGoogle Scholar
  101. Secci, M. E., Factor, J. A., Schindler, C. W., & Panlilio, L. V. (2016). Choice between delayed food and immediate oxycodone in rats. Psychopharmacology, 233(23–24), 3977–3989.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Seip-Cammack, K. M., & Shapiro, M. L. (2014). Behavioral flexibility and response selection are impaired after limited exposure to oxycodone. Learning & Memory, 21(12), 686–695.CrossRefGoogle Scholar
  103. Sellers, E. M., Schuller, R., Romach, M. K., & Horbay, G. L. (2006). Relative abuse potential of opioid formulations in Canada: a structured field study. Journal of Opioid Management, 2(4), 219–227.PubMedCrossRefGoogle Scholar
  104. Silvasti, M., Rosenberg, P., Seppälä, T., Svartling, N., & Pitkänen, M. (1998). Comparison of analgesic efficacy of oxycodone and morphine in postoperative intravenous patient-controlled analgesia. ActaAnaesthesiolScand, 42(5), 576–580.Google Scholar
  105. Smith, H. S. (2009). Opioid metabolism. Mayo Clinic Proceedings, 87(7), 613–624.CrossRefGoogle Scholar
  106. Smith, M. Y., & Woody, G. (2005). Nonmedical use and abuse of scheduled medications prescribed for pain, pain-related symptoms, and psychiatric disorders: patterns, user characteristics, and management options. Curr.Psychiatry Rep., 7, 337–343.PubMedCrossRefGoogle Scholar
  107. Sng, B., Kwok, S., Mathur, D., Ithnin, F., Newton-Dunn, C., Assam, P., et al. (2016). Comparison of epidural oxycodone and epidural morphine for post-caesarean section analgesia: a randomised controlled trial. Indian Journal of Anaesthesia, 60(3), 187.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sproule, B., Brands, B., Li, S., & Catz-Biro, L. (2009). Changing patterns in opioid addiction: characterizing users of oxycodone and other opioids. Canadian Family Physician, 55(1), 68–69.PubMedPubMedCentralGoogle Scholar
  109. Squeglia, L. M., Jacobus, J., & Tapert, S. F. (2009). The influence of substance use on adolescent brain development. Clinical EEG and Neuroscience, 40(1), 31–38.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Steketee, J. D., & Kalivas, P. W. (2011). FDrug wanting: Behavioral sensitization and relapse to drug-seeking behavior. Pharmacological Reviews, 63(2), 348–365.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Stoops, W. W., Hatton, K. W., Lofwall, M. R., Nuzzo, P. A., & Walsh, S. L. (2010). Intravenous oxycodone, hydrocodone, and morphine in recreational opioid users: abuse potential and relative potencies. Psychopharmacology, 212(2), 193–203.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Substance Abuse and Mental Health Services Administration (SAMHSA). (2013). National Survey on Drug use and Health 2011 and 2012. Rockville: Center for Behavioral Health Statistics and Quality.Google Scholar
  113. Substance Abuse and Mental Health Services Administration (SAMHSA). (2017). Prescription Drug Misuse and Abuse. Retrieved from
  114. Thompson, C. M., Wojno, H., Greiner, E., May, E. L., Rice, K. C., & Selley, D. E. (2004). Activation of G-proteins by morphine and codeine congeners: insights to the relevance of O- and N-demethylated metabolites at mu- and delta-opioid receptors. The Journal of Pharmacology and Experimental Therapeutics, 308(2), 547–554.PubMedCrossRefGoogle Scholar
  115. United Nations. (2016). World drug report on international narcotics control board for 2016. Vienna: United Nations.CrossRefGoogle Scholar
  116. Upadhyay, J., et al. (2010). Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain, 133, 2098–2114.PubMedPubMedCentralCrossRefGoogle Scholar
  117. U.S. Cong., Senate Caucus on International Narcotics Control. (2014, May 14). National Institute on Drug Abuse. (ND. Volkow, Author) [Cong. Rept.]. Retrieved from
  118. Vilà-Balló, A., Mas-Herrero, E., Ripollés, P., Simó, M., Miró, J., Cucurell, D., et al. (2017). Unraveling the role of the hippocampus in reversal learning. The Journal of Neuroscience, 37(28), 6686–6697.PubMedCrossRefGoogle Scholar
  119. Volkow, N. D., & Mclellan, A. T. (2016). Opioid abuse in chronic pain—misconceptions and mitigation strategies. New England Journal of Medicine, 374(13), 1253–1263.PubMedCrossRefGoogle Scholar
  120. Vosburg, S. K., Eaton, T. A., Sokolowska, M., Osgood, E. D., Ashworth, J. B., Trudeau, J. J., et al. (2016). Prescription opioid abuse, prescription opioid addiction, and heroin abuse among adolescents in a recovery high school: a pilot study. Journal of Child & Adolescent Substance Abuse, 25(2), 105–112.CrossRefGoogle Scholar
  121. Wade, C. L., Vendruscolo, L. F., Scholosburg, J. E., Hernandez, D. O., & Koob, G. F. (2015). Compulsive-like responding for opioid analgesics in rats with extended access. Neuropsychopharmacology, 40(2), 421–428.PubMedCrossRefGoogle Scholar
  122. Walsh, S. L., Nuzzo, P. A., Lofwall, M. R., & Holtman, J. R. (2008). The relative abuse liability of oral oxycodone, hydrocodone and hydromorphone assessed in prescription opioid abusers. Drug and Alcohol Dependence, 98(3), 191–202.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Webster, L. R., Bath, B., Medve, R. A., Marmon, T., & Stoddard, G. J. (2012). Randomized, double-blind, placebo-controlled study of the abuse potential of different formulations of oral oxycodone. Pain Medicine, 13(6), 790–801.PubMedCrossRefGoogle Scholar
  124. Weele, C. M., Porter-Stransky, K. A., Mabrouk, O. S., Lovic, V., Singer, B. F., Kennedy, R. T., & Aragona, B. J. (2014). Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. European Journal of Neuroscience, 40(7), 3041–3054.CrossRefGoogle Scholar
  125. Wiebelhaus, J. M., Walentiny, D. M., & Beardsley, P. M. (2016). Effects of acute and repeated administration of oxycodone and naloxone-precipitated withdrawal on intracranial self-stimulation in rats. Behavioral Pharmacology, 356(1), 43–52.Google Scholar
  126. Wise, R. A., & Koob, G. F. (2014). The development and maintenance of drug addiction. Neuropsychopharmacology, 39(2), 254–262.PubMedCrossRefGoogle Scholar
  127. Wisniewski, A. M., Purdy, C. H., & Blondell, R. D. (2008). The epidemiologic association between opioid prescribing, non-medical use, and emergency department visits. Journal of Addictive Diseases, 27(1), 1–11.PubMedCrossRefGoogle Scholar
  128. Wong, A., Macleod, D., Robinson, J., Koutsogiannis, Z., Graudins, A., & Greene, S. L. (2015). Oxycodone/naloxone preparation can cause acute withdrawal symptoms when misused parenterally or taken orally. ClinToxicol (Phila), 53(8), 815–818.CrossRefGoogle Scholar
  129. Wu, L., Pilowsky, D. J., & Patkar, A. A. (2008). Non-prescribed use of pain relievers among adolescents in the United States. Drug and Alcohol Dependence, 94, 1–11.PubMedCrossRefGoogle Scholar
  130. Yanagidate, F. (2004). Epidural oxycodone or morphine following gynaecologicalsurgery. British Journal of Anaesthesia, 93(3), 362–367.PubMedCrossRefGoogle Scholar
  131. Zacny, J. P., & Drum, M. (2010). Psychopharmacological effects of oxycodone in healthy volunteers: roles of alcohol-drinking status and sex. Drug and Alcohol Dependence, 107, 209–214.PubMedCrossRefGoogle Scholar
  132. Zhang, Y., Picetti, R., Butelman, E. R., Schlussman, S. D., Ho, A., & Kreek, M. J. (2009). Behavioral and neurochemical changes induced by oxycodone differ between adolescent and adult mice. Neuropsychopharmacology, 34, 912–922.PubMedCrossRefGoogle Scholar
  133. Zhang, Y., Brownstein, A., Buonora, M., Niikura, K., Ho, A., Rosa, J. C., et al. (2015). Self-administration of oxycodone alters synaptic plasticity gene expression in the hippocampus differentially in male adolescent and adult mice. Neuroscience, 285, 34–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of GuelphGuelphCanada

Personalised recommendations