Advertisement

Caudate Volumetric Reductions Predicted by Carbohydrate-Deficient Transferrin in Patients with Alcohol Dependence

  • Shinwon Park
  • Jiyoung J. Jung
  • Ilhyang Kang
  • Boung Chul Lee
  • Suji L. Lee
  • Jiyoung Ma
  • Jungyoon Kim
  • Han Byul Cho
  • Hyeonseok S. Jeong
  • Soo Mee Lim
  • Young Sun Hong
  • Ihn-Geun Choi
  • Jieun E. Kim
Brief Report
  • 40 Downloads

Abstract

The caudate nucleus has shown a high relevance with substance craving and addiction in the pathophysiology of alcohol dependence. In this study, caudate volumetric deficits in patients with alcohol dependence and their associations with carbohydrate-deficient transferrin (CDT), a biomarker of chronic alcohol consumption, were evaluated in 21 patients with alcohol dependence and age- and sex-matched 21 healthy comparison subjects. Between-group difference in caudate volumes and correlations between CDT and caudate volumes in the patient group were examined after adjusting for age, sex, and intracranial volume. Volumetric analysis results show prominent abnormalities in the left caudate among patients with alcohol dependence (z = − 2.70, p = 0.007). CDT levels significantly predicted volumetric deficits in the left caudate (β = − 1.23, p = 0.003). These findings suggest that the caudate nucleus may be one of the important brain regions related to alcohol-induced chronic brain damages.

Keywords

Alcohol dependence Caudate nucleus Carbohydrate-deficient transferrin Structural magnetic resonance imaging Semi-automated segmentation Brain volume 

Notes

Acknowledgements

This work was supported by the Brain Research Program through the National Research Foundation funded by the Ministry of Science, ICT and Future Planning (2015M3C7A1028376), and the Fire Fighting Safety and 119 Rescue Technology Research and Development Program funded by the Ministry of Public Safety and Security (MPSS-Fire Fighting Safety-2016-86).

Compliance with Ethical Standards

Conflict of Interest

All authors declare that they have no potential conflict of interest.

Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study.

References

  1. Alfonso-Loeches, S., & Guerri, C. (2011). Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Critical Reviews in Clinical Laboratory Sciences, 48(1), 19–47.PubMedGoogle Scholar
  2. American Psychiatry Association. (2000). Diagnostic and statistical manual of mental disorders, text revision. Washington, DC: American Psychiatry Association.Google Scholar
  3. Anton, R. F. (2001). Carbohydrate-deficient transferrin for detection and monitoring of sustained heavy drinking. Alcohol, 25(3), 185–188.  https://doi.org/10.1016/S0741-8329(01)00165-3.PubMedGoogle Scholar
  4. Anton, R. F., & Sillanaukee, P. (1996). The use of carbohydrate deficient transferrin as an indicator of alcohol consumption during treatment and follow-up. Alcoholism: Clinical and Experimental Research, 20, 54a–56a.  https://doi.org/10.1111/j.1530-0277.1996.tb01746.x.
  5. Anton, R. F., Stout, R. L., Roberts, J. S., & Allen, J. P. (1998). The effect of drinking intensity and frequency on serum carbohydrate-deficient transferrin and γ-glutamyl transferase levels in outpatient alcoholics. Alcoholism: Clinical and Experimental Research, 22(7), 1456–1462.  https://doi.org/10.1111/j.1530-0277.1998.tb03935.x.Google Scholar
  6. Archibald, S. L., Fennema-Notestine, C., Gamst, A., Riley, E. P., Mattson, S. N., & Jernigan, T. L. (2001). Brain dysmorphology in individuals with severe prenatal alcohol exposure. Developmental Medicine and Child Neurology, 43(3), 148–154.PubMedGoogle Scholar
  7. Arora, A., Neema, M., Stankiewicz, J., Guss, Z. D., Guss, J. G., Prockop, L., & Bakshi, R. (2008). Neuroimaging of toxic and metabolic disorders. Seminars in Neurology, 28(4), 495–510.Google Scholar
  8. Babor, T. F., Higgins-Biddle, J. C., Saunders, J. B., Monteiro, M. G., & World Health Organization. (2001). AUDIT: the alcohol use disorders identification test: guidelines for use in primary care. 2nd edn. Geneva: World Health Organization.Google Scholar
  9. Balleine, B. W., & O'doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1), 48–69.PubMedGoogle Scholar
  10. Barros-Loscertales, A., Meseguer, V., Sanjuan, A., Belloch, V., Parcet, M. A., Torrubia, R., & Avila, C. (2006). Striatum gray matter reduction in males with an overactive behavioral activation system. European Journal of Neuroscience, 24(7), 2071–2074.PubMedGoogle Scholar
  11. Benegal, V., Antony, G., Venkatasubramanian, G., & Jayakumar, P. N. (2007). Imaging study: gray matter volume abnormalities and externalizing symptoms in subjects at high risk for alcohol dependence. Addiction Biology, 12(1), 122–132.PubMedGoogle Scholar
  12. Bortolotti, F., De Paoli, G., & Tagliaro, F. (2006). Carbohydrate-deficient transferrin (CDT) as a marker of alcohol abuse: a critical review of the literature 2001–2005. Journal of Chromatography B, 841(1–2), 96–109.Google Scholar
  13. Brasted, P. J., Robbins, T. W., & Dunnett, S. B. (1999). Distinct roles for striatal subregions in mediating response processing revealed by focal excitotoxic lesions. Behavioral Neuroscience, 113(2), 253.PubMedGoogle Scholar
  14. Cahalan, D., Cisin, I. H., & Crossley, H. M. (1969). American drinking practices: a national study of drinking behavior and attitudes. Monographs of the Rutgers Center of Alcohol Studies, 6, 260.Google Scholar
  15. Calvini, P., Rodriguez, G., Inguglia, F., Mignone, A., Guerra, U. P., & Nobili, F. (2007). The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation. European Journal of Nuclear Medicine and Molecular Imaging, 34(8), 1240–1253.PubMedGoogle Scholar
  16. Cardenas, V. A., Studholme, C., Gazdzinski, S., Durazzo, T. C., & Meyerhoff, D. J. (2007). Deformation-based morphometry of brain changes in alcohol dependence and abstinence. NeuroImage, 34(3), 879–887.PubMedGoogle Scholar
  17. Chester, D. S., Lynam, D. R., Milich, R., & DeWall, C. N. (2016). Craving versus control: negative urgency and neural correlates of alcohol cue reactivity. Drug and Alcohol Dependence, 163(Supplement 1), S25–S28.PubMedGoogle Scholar
  18. Cortese, B. M., Moore, G. J., Bailey, B. A., Jacobson, S. W., Delaney-Black, V., & Hannigan, J. H. (2006). Magnetic resonance and spectroscopic imaging in prenatal alcohol-exposed children: preliminary findings in the caudate nucleus. Neurotoxicology and Teratology, 28(5), 597–606.PubMedGoogle Scholar
  19. Coskunpinar, A., Dir, A. L., & Cyders, M. A. (2013). Multidimensionality in impulsivity and alcohol use: a meta-analysis using the UPPS model of impulsivity. Alcoholism: Clinical and Experimental Research, 37(9), 1441–1450.Google Scholar
  20. Davis, C. G., Thake, J., & Vilhena, N. (2010). Social desirability biases in self-reported alcohol consumption and harms. Addictive Behaviors, 35(4), 302–311.PubMedGoogle Scholar
  21. Divac, I., Rosvold, H. E., & Szwarcbart, M. K. (1967). Behavioral effects of selective ablation of the caudate nucleus. Journal of Comparative and Physiological Psychology, 63(2), 184.PubMedGoogle Scholar
  22. Eagle, D., & Robbins, T. (2003). Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behavioral Neuroscience, 117(6), 1302.PubMedGoogle Scholar
  23. Falk, D. E., Yi, H., & Hiller-Sturmhofel, S. (2006). An epidemiologic analysis of co-occurring alcohol and tobacco use and disorders. Alcohol Research & Health, 29(3), 162–171.Google Scholar
  24. Fryer, S. L., Tapert, S. F., Mattson, S. N., Paulus, M. P., Spadoni, A. D., & Riley, E. P. (2007). Prenatal alcohol exposure affects frontal–striatal BOLD response during inhibitory control. Alcoholism: Clinical and Experimental Research, 31(8), 1415–1424.Google Scholar
  25. Fryer, S. L., Mattson, S. N., Jernigan, T. L., Archibald, S. L., Jones, K. L., & Riley, E. P. (2012). Caudate volume predicts neurocognitive performance in youth with heavy prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 36(11), 1932–1941.Google Scholar
  26. Golka, K., & Wiese, A. (2004). Carbohydrate-deficient transferrin (CDT)—a biomarker for long-term alcohol consumption. Journal of Toxicology and Environmental Health, Part B, 7(4), 319–337.Google Scholar
  27. Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2008). The cognitive functions of the caudate nucleus. Progress in Neurobiology, 86(3), 141–155.PubMedGoogle Scholar
  28. Harper, C. (1998). The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? Journal of Neuropathology and Experimental Neurology, 57(2), 101–110.PubMedGoogle Scholar
  29. Haruno, M., & Kawato, M. (2006). Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. Journal of Neurophysiology, 95(2), 948–959.PubMedGoogle Scholar
  30. Heilig, M., & Koob, G. F. (2007). A key role for corticotropin-releasing factor in alcohol dependence. Trends in Neurosciences, 30(8), 399–406.PubMedPubMedCentralGoogle Scholar
  31. Heinz, A., Siessmeier, T., Wrase, J., Hermann, D., Klein, S., Grüsser-Sinopoli, S. M., et al. (2004). Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving. American Journal of Psychiatry, 161(10), 1783–1789.PubMedGoogle Scholar
  32. Howell, N. A., Worbe, Y., Lange, I., Tait, R., Irvine, M., Banca, P., et al. (2013). Increased ventral striatal volume in college-aged binge drinkers. PloS One, 8(9), e74164.PubMedPubMedCentralGoogle Scholar
  33. John, U., Meyer, C., Rumpf, H.-J., Schumann, A., Thyrian, J. R., & Hapke, U. (2003). Strength of the relationship between tobacco smoking, nicotine dependence and the severity of alcohol dependence syndrome criteria in a population-based sample. Alcohol and Alcoholism, 38(6), 606–612.PubMedGoogle Scholar
  34. Martinez, D., Gil, R., Slifstein, M., Hwang, D.-R., Huang, Y., Perez, A., et al. (2005). Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biological Psychiatry, 58(10), 779–786.PubMedGoogle Scholar
  35. McLellan, A., Lewis, D. C., O'Brien, C. P., & Kleber, H. D. (2000). Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. Journal of the American Medical Association, 284(13), 1689–1695.PubMedGoogle Scholar
  36. Miller, P., Dominick, C., & Anton, R. (2005). Carbohydrate-deficient transferrin test: a tool for detecting alcohol abuse. Current Psychiatry, 4(6), 80–87.Google Scholar
  37. Modell, J. G., & Mountz, J. M. (1995). Focal cerebral blood flow change during craving for alcohol measured by SPECT. The Journal of Neuropsychiatry and Clinical Neurosciences, 7(1), 15–22.PubMedGoogle Scholar
  38. Modell, J. G., Glaser, F. B., Mountz, J. M., Schmaltz, S., & Cyr, L. (1992). Obsessive and compulsive characteristics of alcohol abuse and dependence: quantification by a newly developed questionnaire. Alcoholism: Clinical and Experimental Research, 16(2), 266–271.Google Scholar
  39. Pardoe, H. R., Pell, G. S., Abbott, D. F., & Jackson, G. D. (2009). Hippocampal volume assessment in temporal lobe epilepsy: how good is automated segmentation? Epilepsia, 50(12), 2586–2592.PubMedPubMedCentralGoogle Scholar
  40. Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage, 56(3), 907–922.PubMedPubMedCentralGoogle Scholar
  41. Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex, 16(10), 1508–1521.PubMedGoogle Scholar
  42. Reynaud, M., Schellenberg, F., Loisequx-Meunier, M.-N., Schwan, R., Maradeix, B., Planche, F., & Gillet, C. (2000). Objective diagnosis of alcohol abuse: compared values of carbohydrate-deficient transferrin (CDT), γ-glutamyl transferase (GGT), and mean corpuscular volume (MCV). Alcoholism: Clinical and Experimental Research, 24(9), 1414–1419.Google Scholar
  43. Schacht, J. P., Anton, R. F., Randall, P. K., Li, X., Henderson, S., & Myrick, H. (2011). Stability of fMRI striatal response to alcohol cues: a hierarchical linear modeling approach. NeuroImage, 56(1), 61–68.PubMedPubMedCentralGoogle Scholar
  44. Sobell, L. C., & Sobell, M. B. (1995). Alcohol consumption measures. Assessing Alcohol Problems: A Guide for Clinicians and Researchers, 2, 75–99.Google Scholar
  45. Stibler, H. (1991). Carbohydrate-deficient transferrin in serum: a new marker of potentially harmful alcohol consumption reviewed. Clinical Chemistry, 37(12), 2029–2037.PubMedGoogle Scholar
  46. Sullivan, E. V., Deshmukh, A., De Rosa, E., Rosenbloom, M. J., & Pfefferbaum, A. (2005). Striatal and forebrain nuclei volumes: contribution to motor function and working memory deficits in alcoholism. Biological Psychiatry, 57(7), 768–776.PubMedGoogle Scholar
  47. Taki, Y., Thyreau, B., Kinomura, S., Sato, K., Goto, R., Kawashima, R., & Fukuda, H. (2011). Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals. PloS One, 6(7), e22734.PubMedPubMedCentralGoogle Scholar
  48. Van Leemput, K., Bakkour, A., Benner, T., Wiggins, G., Wald, L. L., Augustinack, J., et al. (2009). Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus, 19(6), 549–557.PubMedPubMedCentralGoogle Scholar
  49. Verardi, V., & Croux, C. (2009). Robust regression in Stata. Stata Journal, 9(3), 439–453.Google Scholar
  50. Volkow, N. D., Wang, G.-J., Telang, F., Fowler, J. S., Logan, J., Childress, A.-R., et al. (2006). Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. The Journal of Neuroscience, 26(24), 6583–6588.PubMedGoogle Scholar
  51. Volkow, N. D., Wang, G.-J., Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 108(37), 15037–15042.Google Scholar
  52. White, N. M. (2009). Some highlights of research on the effects of caudate nucleus lesions over the past 200 years. Behavioural Brain Research, 199(1), 3–23.PubMedGoogle Scholar
  53. Whiteside, S. P., & Lynam, D. R. (2001). The five factor model and impulsivity: using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30(4), 669–689.Google Scholar
  54. Yersin, B., Nicolet, J., Decrey, H., Burnier, M., van Melle, G., & Pécoud, A. (1995). Screening for excessive alcohol drinking: comparative value of carbohydrate-deficient transferrin, γ-glutamyltransferase, and mean corpuscular volume. Archives of Internal Medicine, 155(17), 1907–1911.PubMedGoogle Scholar
  55. Young, C., & Olney, J. W. (2006). Neuroapoptosis in the infant mouse brain triggered by a transient small increase in blood alcohol concentration. Neurobiology of Disease, 22(3), 548–554.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Shinwon Park
    • 1
    • 2
  • Jiyoung J. Jung
    • 1
    • 3
  • Ilhyang Kang
    • 1
    • 2
  • Boung Chul Lee
    • 4
  • Suji L. Lee
    • 1
    • 2
  • Jiyoung Ma
    • 1
    • 5
  • Jungyoon Kim
    • 1
    • 2
  • Han Byul Cho
    • 1
    • 6
  • Hyeonseok S. Jeong
    • 7
  • Soo Mee Lim
    • 1
    • 2
    • 8
  • Young Sun Hong
    • 9
  • Ihn-Geun Choi
    • 10
  • Jieun E. Kim
    • 1
    • 2
  1. 1.Ewha Brain Institute, Ewha Womans UniversitySeoulSouth Korea
  2. 2.Department of Brain and Cognitive SciencesEwha Brain Institute, Ewha Womans UniversitySeoulSouth Korea
  3. 3.Dobong Community Addiction Management CenterSeoulSouth Korea
  4. 4.Department of NeuropsychiatryHallym University Hangang Sacred Heart HospitalSeoulSouth Korea
  5. 5.Interdisciplinary Program in NeuroscienceSeoul National UniversitySeoulSouth Korea
  6. 6.The Brain Institute, University of UtahSalt Lake CityUSA
  7. 7.Department of Radiology, Incheon St. Mary’s Hospital, College of MedicineThe Catholic University of KoreaSeoulSouth Korea
  8. 8.Department of Radiology and Medical Research InstituteEwha Womans University School of MedicineSeoulSouth Korea
  9. 9.Department of Internal Medicine, School of MedicineEwha Womans UniversitySeoulSouth Korea
  10. 10.Department of PsychiatryHallym University Kangnam Sacred Heart HospitalSeoulSouth Korea

Personalised recommendations