Neuropsychological Status of Heroin Users Undergoing Methadone Maintenance in Harm Reduction Program and Therapeutic Community

  • J. OliveiraEmail author
  • P. Lopes
  • P. Gamito
  • H. Trigo
  • P. Sargento
  • B. Rosa
  • R. Coutinho


The neuropsychological consequences of opioid abuse are particularly evident in attention, memory and executive functioning, but it remains unclear whether these consequences persist in heroin users doing methadone in harm reduction programs and therapeutic community treatments. Thus, the current study aimed to assess these cognitive domains in distinct clinical groups of heroin users undergoing methadone maintenance. The sample consisted of 110 participants divided in four groups (low threshold methadone program, short-term community treatment, long-term community treatment, drug-free controls). These groups were compared regarding memory and attentional abilities. Multiple linear regressions were then conducted to obtain standardized effect sizes for significant comparisons. Results showed a better attentional and memory function in patients that were in opioid dependence treatment in community opposed to patients in harm reduction programs (p’s < 0.05). Standardized effect sizes suggest larger improvements in cognition in long-term heroin-abstinent individuals doing methadone maintenance. These results highlight the detrimental effect of heroin use in cognitive function, but also suggest that this decrement may be reversed during long-term opioid dependence treatment.


Harm reduction Therapeutic community Methadone maintenance Cognition Heroin 


Compliance with Ethical Standards

Conflicts of Interest

The authors of this paper declare that they have no conflict of interest.

Research Involving Human Participants and/or Animal: Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.


  1. Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nature Neuroscience, 8(11), 1458–1463. doi: 10.1038/nn1584.CrossRefPubMedGoogle Scholar
  2. Berry, D. T., Allen, R. S., & Schmitt, F. A. (1991). The Rey-Osterrieth complex figure: psychometric characteristics in a geriatric sample. The Clinical Neuropsychologist, 5, 143–153. doi: 10.1080/13854049108403298.CrossRefGoogle Scholar
  3. Brady, K. T., Gray, K. M., & Tolliver, B. K. (2011). Cognitive enhancers in the treatment of substance use disorders: clinical evidence. Pharmacology, Biochemistry and Behavior, 99(2), 285–294. doi: 10.1016/j.pbb.2011.04.017.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brand, M., Roth-Bauer, M., Driessen, M., & Markowitsch, H. J. (2008). Executive functions and risky decision-making in patients with opiate dependence. Drug and Alcohol Dependence, 97(1–2), 64–72. doi: 10.1016/j.drugalcdep.2008.03.017.CrossRefPubMedGoogle Scholar
  5. Cacho, J., Benito-León, J., García-García, R., Fernández-Calvo, B., Vicente-Villardón, J. L., & Mitchell, A. J. (2010). Does the combination of the MMSE and clock drawing test (mini-clock) improve the detection of mild Alzheimer’s disease and mild cognitive impairment? Journal of Alzheimer’s Disease, 22(3), 889–96. doi: 10.3233/JAD-2010-101182.PubMedGoogle Scholar
  6. Darke, S., McDonald, S., Kaye, S., & Torok, M. (2012). Comparative patterns of cognitive performance amongst opioid maintenance patients, abstinent opioid users and non-opioid users. Drug and Alcohol Dependence, 126(3), 309–315. doi: 10.1016/j.drugalcdep.2012.05.032.CrossRefPubMedGoogle Scholar
  7. Davis, P., Liddiard, H., & McMillan, T. (2002). Neuropsychological deficits and opiate abuse. Drug and Alcohol Dependence, 67(1), 105–108. doi: 10.1016/S0376-8716(02)00012-1.CrossRefPubMedGoogle Scholar
  8. Ersche, K. D., Clark, L., London, M., Robbins, T. W., & Sahakian, B. J. (2006). Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology, 31(5), 1036–1047. doi: 10.1038/sj.npp.1300889.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fishbein, D. H., Krupitsky, E., Flannery, B. A., Langevin, D. J., Bobashev, G., Verbitskaya, E., et al. (2007). Neurocognitive characterizations of Russian heroin addicts without a significant history of other drug use. Drug and Alcohol Dependence, 90(1), 25–38. doi: 10.1016/j.drugalcdep.2007.02.015.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. doi: 10.1016/0022-3956(75)90026-6.CrossRefPubMedGoogle Scholar
  11. Galynker, I. I., Watras-Ganz, S., Miner, C., Rosenthal, R. N., Jarlais, D. D., Richman, B. L., et al. (2000). Cerebral metabolism in opiate-dependent subjects: effects of methadone maintenance. Mount Sinai Journal of Medicine, 67(5–6), 381–387. doi: 10.1016/j.drugalcdep.2007.03.015.PubMedGoogle Scholar
  12. Kawano, M., Ichimiya, A., Ogomori, K., Kuwabara, Y., Sasaki, M., Yoshida, T., & Tashiro, N. (2001). Relationship between both IQ and mini-mental state examination and the regional cerebral glucose metabolism in clinically diagnosed Alzheimer’s disease: a PET study. Dementia and Geriatric Cognitive Disorders, 12(2), 171–6. doi: 10.1159/000051253.CrossRefPubMedGoogle Scholar
  13. Mathers, B. M., Degenhardt, L., Ali, H., Wiessing, L., Hickman, M., Mattick, R. P., et al. (2010). HIV prevention, treatment, and care services for people who inject drugs: a systematic review of global, regional, and national coverage. Lancet, 375(9719), 1014–1028. doi: 10.1016/S0140-6736(10)60232-2.CrossRefPubMedGoogle Scholar
  14. Mintzer, M., & Stitzer, M. (2002). Cognitive impairment in methadone maintenance patients. Drug and Alcohol Dependence, 67(1), 41–51. doi: 10.1016/S0376-8716(02)00013-3.CrossRefPubMedGoogle Scholar
  15. Mintzer, M., Copersino, M., & Stitzer, M. (2005). Opioid abuse and cognitive performance. Drug and Alcohol Dependence, 78(2), 225–230. doi: 10.1016/j.drugalcdep.2004.10.008.CrossRefPubMedGoogle Scholar
  16. Montiel, J. M., Figueiredo, E. R. M., Lustosa, D. B. S., & Dias, N. M. (2006). Evdiencia de validade para o teste de atenção concentrada de toulouse-pieron no contexto de transito [Validity evidence to Toulouse-Pieron Concentrate Attention in the traffic context]. Psicologia Pesquisa and Transito, 2(1), 19–27.Google Scholar
  17. Osterrieth, P. A. (1944). Filetest de copie d’une figure complex: contribution a l’etude de la perception et de la memoire [The test of copying a complex figure: a contribution to the study of perception and memory]. Archives de Psychologie, 30, 286–356.Google Scholar
  18. Passetti, F., Clark, L., Mehta, M. A., Joyce, E., & King, M. (2008). Neuropsychological predictors of clinical outcome in opiate addiction. Drug and Alcohol Dependence, 94, 82–91. doi: 10.1016/j.drugalcdep.2007.10.008.CrossRefPubMedGoogle Scholar
  19. Pirastu, M., Fais, R., Messina, M., Bini, V., Spiga, S., Falconieri, D., & Diana, M. (2006). Impaired decision-making in opiate-dependent subjects: effect of pharmacological therapies. Drug and Alcohol Dependence, 83, 163–168. doi: 10.1016/j.drugalcdep.2005.11.008.CrossRefPubMedGoogle Scholar
  20. Schramm, U., Berger, G., Müller, R., Kratzsch, T., Peters, J., & Frölich, L. (2002). Psychometric properties of clock drawing test and MMSE or short performance test (SKT) in dementia screening in a memory clinic population. International Journal of Geriatric Psychiatry, 17(3), 254–60. doi: 10.1002/gps.585.CrossRefPubMedGoogle Scholar
  21. Soyka, M., Lieb, M., Kagerer, S., Zingg, C., Koller, G., Lehnert, P., et al. (2008). Cognitive functioning during methadone and buprenorphine treatment. Journal of Clinical Psychopharmacology, 28(6), 699–703. doi: 10.1097/JCP.0b013e31818a6d38.CrossRefPubMedGoogle Scholar
  22. Strike, C., Millson, M., Hopkins, S., & Smith, C. (2013). What is low threshold methadone maintenance treatment? International Journal of Drug Policy, 24(6), e51–6. doi: 10.1016/j.drugpo.2013.05.005.CrossRefPubMedGoogle Scholar
  23. Torrens, M., Castillo, C., & Pérez-Solá, V. (1996). Retention in a low-threshold methadone maintenance program. Drug and Alcohol Dependence, 41(1), 55–59. doi: 10.1016/0376-8716(96)01230-6.CrossRefPubMedGoogle Scholar
  24. Toulouse, E., & Pieron, H. (1986). Prueba perceptiva y de atención. Madrid: Tea Ediciones.Google Scholar
  25. Verdejo, A., Toribio, I., Orozco, C., Puente, K., & Perez-Garcia, M. (2005). Neuropsychological functioning in methadone maintenance patients versus abstinent heroin abusers. Drug and Alcohol Dependence, 78(3), 283–288. doi: 10.1016/j.drugalcdep.2004.11.006.CrossRefPubMedGoogle Scholar
  26. Whitney, K. A., Maoz, O., Hook, J. N., Steiner, A. R., & Bieliauskas, L. A. (2007). IQ and scores on the Mini-Mental State Examination (MMSE): controlling for effort and education among geriatric inpatients. Aging, Neuropsychology, and Cognition, 14(5), 545–52. doi: 10.1080/13825580600850934.CrossRefGoogle Scholar
  27. Wolf-Klein, G. P., Silverstone, F. A., Levy, A. P., & Brod, M. (1989). Screening of Alzheimer’s disease by clock drawing. Journal of the American Geriatrics Society, 37(8), 730–734.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.COPELABS / EPCVUniversity LusófonaLisbonPortugal
  2. 2.School of Psychology and of Life SciencesUniversity LusófonaLisbonPortugal
  3. 3.Ares do PinhalLisbonPortugal
  4. 4.ET SantarémARS Lisboa e Vale do TejoSantarémPortugal
  5. 5.ET XabregasARS Lisboa e Vale do TejoLisbonPortugal

Personalised recommendations