Advertisement

Subtypes of Adolescent Video Gamers: a Latent Class Analysis

  • Guy Faulkner
  • Hyacinth Irving
  • Edward M. Adlaf
  • Nigel Turner
Article

Abstract

Objective Excessive video gaming may represent a behavioural addiction among adolescents. The objective of this study was to identify and describe the taxonomy of problem gamers based on responses to the Problem Video Game Playing (PVP) scale. Methods Data based on 3338 Ontario high schoolers sampled from 103 schools (aged 11–20; male = 51 %) who completed self-administered questionnaires. Following latent class extraction, a regression assessed the association between the derived classes and the covariates sex and socioeconomic status. We also assessed self-rated physical and mental health as auxiliary variables in the model to evaluate the predictive validity of the extracted classes. Results A 4-class model provided the best statistical fit to the nine PVP symptoms. The Severe PVP, High PVP, Low PVP and Normative classes comprised 1.9 %, 12.2 %, 36.0 % and 50.0 % of the sample, respectively. The Severe PVP class was characterized by having the highest probabilities of endorsing the PVP items. The High PVP class was differentiated from the Severe PVP class by having lower probabilities of endorsing the disregard for consequences and the lies and deception items and moderate probabilities of endorsing withdrawal and escape items. Significantly poorer physical and mental health outcomes differentiated the Severe PVP class from the remaining classes. Conclusions Adolescent problem video gamers are not homogeneous. They experience differing patterns of symptoms requiring attention of prevention programmers and clinicians.

Keywords

Problem video game playing (PVP) scale Latent class analysis (LCA) Ontario high school students Ontario student drug use and health survey Mental health 

Notes

Acknowledgments

Preparation of this work was funded in part by ongoing support from the Ontario Ministry of Health and Long Term Care. We would like to thank all the schools and students that participated in the study, and the Institute for Social Research at York University for assistance with the survey design and data collection.

Conflict of Interest

The authors do not have a financial relationship with the organization that sponsored the research. Guy Faulkner, Hyacinth Irving, Edward Adlaf and Nigel Turner declare that they have no conflict of interest.

References

  1. American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.CrossRefGoogle Scholar
  2. Asparouhov, T., & Muthén, B. (2008). Multilevel mixture models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 27–51). Charlotte, NC: Information Age.Google Scholar
  3. Biddle, S. J. H., Gorely, T., Marshall, S. J., Murdey, I., & Cameron, N. (2004). Physical Activity and Sedentary Behaviours in Youth: Issues and Controversies. Journal of the Royal Society for the Promotion of Health, 124, 29–33. doi: 10.1177/146642400312400110.PubMedCrossRefGoogle Scholar
  4. Bioulac, S., Arfi, L., & Bouvard, M. P. (2008). Attention Deficit/Hyperactivity Disorder and Video Games: a Comparative Study of Hyperactive and Control Children. European Psychiatry, 23, 134–141. doi: 10.1016/j.eurpsy.2007.11.002.PubMedCrossRefGoogle Scholar
  5. Blaszczynski, A., & Nower, L. (2002). A Pathways Model of Problem and Pathological Gambling. Addiction, 97, 487–499. doi: 10.1046/j.1360–0443.2002.00015.x.PubMedCrossRefGoogle Scholar
  6. Canadian Society of Exercise Physiology. (2011). Canadian Physical Activity Guidelines. Retrieved September 27, 2013, from http://www.csep.ca/CMFiles/Guidelines/CSEP-InfoSheets-youth-ENG.pdf. Google Scholar
  7. Carson, V., & Janssen, I. (2012). Neighborhood Disorder and Screen Time Among 10–16 Year old Canadian Youth: a Cross-Sectional Study. International Journal of Behavioural Nutrition and Physical Activity, 9, 66. doi: 10.1186/1479–5868–9–66.CrossRefGoogle Scholar
  8. Centre for Addiction and Mental Health. (2012). Ontario Student Drug Use and Health Survey. Retrieved September 27, 2013, from http://www.camh.ca/research/osduhs.aspx.Google Scholar
  9. Cole, T. J., Bellizzi, M. C., Flegal, K. M., & Dietz, W. H. (2000). Establishing a Standard Definition for Child Overweight and Obesity Worldwide: International Survey. British Medical Journal, 320, 1240–1243.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Croon, M. (2002). Ordering the Classes. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied Latent Class Analysis (pp. 137–162). New York: Cambridge University Press.CrossRefGoogle Scholar
  11. D’Arcy, C. (1998). Social distribution of health among Canadians. In D. Coburn, C. D’Arcy, & G. M. Torrance (Eds.), Health and Canadian Society: Sociological Perspectives (3rd ed., pp. 73–101). Toronto: University of Toronto Press.Google Scholar
  12. Demetrovics, Z., Urban, R., Nagygyorgy, K., Farkas, J., Griffiths, M. D., Papay, O., Kokonyei, G., Felvinczi, K., & Olah, A. (2012). The Development of the Problematic Online Gaming Questionnaire (POGQ). PloS One, 7(5), e36417.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Desai, R. A., Krishnan-Sarin, S., Cavallo, D., & Potenza, M. N. (2010). Video-Gaming Among High School Students: Health Correlates, Gender Differences, and Problematic Gaming. Pediatrics, 126, e1414–1424. doi: 10.1542/peds.2009–2706.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Ferguson, C. J., Coulson, M., & Barnett, J. (2011). A Meta-Analysis of Pathological Gaming Prevalence and Comorbidity with Mental Health, Academic and Social Problems. Journal of Psychiatric Research, 45, 1573–1578. doi: 10.1016/j.jpsychires.2011.09.005.PubMedCrossRefGoogle Scholar
  15. Gentile, D. A. (2009). Pathological Video-Game Use Among Youth Ages 8 to 18: a National Study. Psychological Science, 20, 594–602. doi: 10.1111/j.1467–9280.2009.02340.x.PubMedCrossRefGoogle Scholar
  16. Gentile, D. A., Choo, H., Liau, A., Sim, T., Li, D., Fung, D., & Khoo, A. (2011). Pathological Video Game use Among Youths: a Two-Year Longitudinal Study. Pediatrics, 127, e319–e20. doi: 10.1542/peds.2010–1353.PubMedCrossRefGoogle Scholar
  17. Goldberg, D. P., & William, P. (1998). A user’s guide to the General Health Questionnaire. Windsor, UK: NFER-N.Google Scholar
  18. Goldberg, D. P., Gater, R., Sartorius, N., Ustun, T. B., Piccinelli, M., Gureje, O., & Rutter, C. (1997). The Validity of Two Versions of the GHQ in the WHO Study of Mental Illness in General Health Care. Psycholical Medicine, 27, 191–197.CrossRefGoogle Scholar
  19. Goodman, E., Adler, N. E., Kawachi, I., Frazier, A. L., Huang, B., & Colditz, G. A. (2001). Adolescents’ Perceptions of Social Status: Development and Evaluation of a New Indicator. Pediatrics, 108, e31. doi: 10.1542/peds.108.2.e31.PubMedCrossRefGoogle Scholar
  20. Griffiths, M. D., Parke, J., & Derevensky, J. L. (2011). Remote gambling in adolescence. In J.L. Derevensky, D.T. Shek & J. Merrick J (Eds.), Youth Gambling: The Hidden Addiction (pp. 125–143). Berlin/Boston: De Gruyter.Google Scholar
  21. Griffiths, M. D., King, D. L., & Demetrovics, Z. (2014). DSM-5 Internet Gaming Disorder Needs a Unified Approach to Assessment. Neuropsychiatry, 4, 1–4.CrossRefGoogle Scholar
  22. Groves, R., & Peytcheva, E. (2008). The Impact of Nonresponse on Nonresponse Bias: a Meta-Analysis. Public Opinion Quarterly, 72, 167–189.CrossRefGoogle Scholar
  23. Gupta, R., & Derevensky, J. (2011). Defining and assessing binge gambling. In J.L. Derevensky, D.T. Shek & J. Merrick J (Eds.), Youth Gambling: The Hidden Addiction (pp. 79–97). Berlin/Boston: De Gruyter.Google Scholar
  24. Hagenaars, J. A., & McCutcheon, A. L. (2002). Applied Latent Class Analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
  25. King, D. L., & Delfabbro, P. H. (2013). Issues for DSM-5: Video-Gaming Disorder? Australia and New Zealand Journal of Psychiatry, 47, 20–22. doi: 10.1177/0004867412464065.CrossRefGoogle Scholar
  26. King, D. L., Delfabbro, P. H., Zwaans, T., & Kaptsis, D. (2013). Clinical Departures and Axis 1 Comorbidity of Australian Adolescent Pathological Internet and Video Game Users. Australia and New Zealand Journal of Psychiatry, 47, 1058–1067. doi: 10.1177/0004867413491159.CrossRefGoogle Scholar
  27. Korn, E., & Graubard, B. I. (1999). The Analysis of Health Surveys. New York: John Wiley.CrossRefGoogle Scholar
  28. Kuss, J. D., & Griffiths, M. D. (2011). Internet Gaming Addiction: A Systematic Review of Empirical Research. International Journal of Multimedia & its Applications, 10, 278–296. doi: 10.1007/s11469-011-9318-5.Google Scholar
  29. McDowell, I. (2006). Measuring health: A guide to rating scales and questionnaires (3rd ed.). New York: Oxford University Press.CrossRefGoogle Scholar
  30. Mentzoni, R. A., Brunborg, G. S., Molde, H., Myrseth, H., Skouverøe, K. J., Hetland, J., & Pallesen, S. (2011). Problematic Video Game use: Estimated Prevalence and Associations with Mental and Physical Health. Cyberpsychology, Behavior and Social Networking, 14, 591–596. doi: 10.1089/cyber.2010.0260.PubMedCrossRefGoogle Scholar
  31. Moffitt, T. E. (2006). Life-course-persistent versus adolescence-limited antisocial behavior. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology (Risk, disorder, and adaptation, 2nd edition, Vol. 3, pp. 570–598). Hoboken, NJ: John Wiley & Sons.Google Scholar
  32. Muthén, B. (2002). Should Substance use Disorder be Considered as Categorical or Dimensional? Addiction, 101, 6–16. doi: 10.1111/j.1360–0443.2006.01583.x.CrossRefGoogle Scholar
  33. Muthén, L. K., & Muthén, B. O. (1998–2011). Mplus User’s Guide Version 11.2. Los Angeles, CA: Muthén and Muthén.Google Scholar
  34. Nower, L., & Blaszczynski, A. (2004). The Pathways Model as Harm Minimization for Youth Gamblers in Educational Settings. Child and Adolescent Social Work Journal, 21, 25–45. doi: 10.1023/B:CASW.0000012347.61618.f7.CrossRefGoogle Scholar
  35. Nylund, K. L., Asparouhov, T., & Muthén, B. (2007). Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: a Monte Carlo Simulation Study. Structural Equation Modeling, 14, 535–569.CrossRefGoogle Scholar
  36. Paglia-Boak, A., Adlaf, E. M., & Mann, R. E. (2011). Drug use among Ontario students, 1977–2011: Detailed OSDUHS findings (CAMH Research Series Document 33). Toronto, ON: Centre for Addiction and Mental Health.Google Scholar
  37. Pápay, O., Urban, R., Griffiths, M. D., Nagygyorgy, K., Farkas, J., Kokonyei, G., Felvinczi, K., Olah, A., Elekes, Z., & Demetrovics, Z. (2013). Psychometric Properties of the Problematic Online Gaming Questionnaire Short-Form (POGQ-SF) and Prevalence of Problematic Online Gaming in a National Sample of Adolescents. Cyberpsychology, Behavior and Social Networking, 16, 340–348.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Patterson, B. H., Dayton, M., & Graubard, B. I. (2002). Latent Class Analysis of a Complex Sample Survey Data: Application to Dietary Data. Journal of the American Statistical Association, 97, 721–741. doi: 10.1198/016214502388618465.CrossRefGoogle Scholar
  39. Pearson, N., & Biddle, S. J. (2011). Sedentary Behavior and Dietary Intake in Children, Adolescents, and Adults: a Systematic Review. American Journal of Preventive Medicine, 41, 178–188. doi: 10.1016/j.amepre.2011.05.002.PubMedCrossRefGoogle Scholar
  40. Ramaswany, V., De Sarbo, W., Reibstein, D., & Robinson, W. (1993). An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data. Marketing Science, 12, 103–124.CrossRefGoogle Scholar
  41. Rehbein, F., Psych, G., Kleimann, M., Mediasci, G., & MoBle, T. (2010). Prevalence and Risk Factors of Video Game Dependency in Adolescence: Results of a German Nationwide Survey. Cyberpsychology, Behavior and Social Networking, 13, 269–277. doi: 10.1089/cyber.2009.0227.PubMedCrossRefGoogle Scholar
  42. Tejeiro Salguero, R. A., & Morán, R. M. B. (2002). Measuring Problem Video Game Playing in Adolescents. Addiction, 97, 1601–1606. doi: 10.1046/j.1360–0443.2002.00218.x.PubMedCrossRefGoogle Scholar
  43. Tejeiro Salguero, R. A., Gomez-Vallecillo, J. L., Pelegrina, M., Wallace, A., & Emberley, E. (2012). Risk Factors Associated with the Abuse of Video Games in Adolescents. Psychology, 3, 310–314. doi: 10.4236/psych.2012.34044.CrossRefGoogle Scholar
  44. Tremblay, M. S., LeBlanc, A. G., Kho, M. E., Saunders, T. J., Larouche, R., Colley, R. C., Goldfield, G., & Connor Gorber, S. (2011a). Systematic Review of Sedentary Behaviour and Health Indicators in School-Aged Children and Youth. International Journal of Behavioural Nutrition and Physical Activity, 8, 98. doi: 10.1186/1479–5868–8–98.CrossRefGoogle Scholar
  45. Tremblay, M. S., Leblanc, A. G., Janssen, I., Kho, M. E., Hicks, A., Murumets, K., Colley, R. C., & Duggan, M. (2011b). Canadian Sedentary Behaviour Guidelines for Children and Youth. Applied Physiology, Nutrition, and Metabolism, 36, 59–71. doi: 10.1139/H11–012.PubMedCrossRefGoogle Scholar
  46. Turner, N. E., Jain, U., Spence, W., & Zangeneh, M. (2008). Pathways to Pathological Gambling: Component Analysis of Variables Related to Pathological Gambling. International Gambling Studies, 8, 281–298.CrossRefGoogle Scholar
  47. Turner, N. E., Ialomiteanu, A., Paglia-Boak, A., & Adlaf, E. M. (2011). A Typological Study of Gambling and Substance Use Among Adolescent Students. Journal of Gambling Issues, 25, 88–107. doi: 10.4309/jgi.2011.25.7.CrossRefGoogle Scholar
  48. Turner, N. E., Paglia-Boak, A., Ballon, B., Cheung, J. T. W., Adlaf, E. M., Henderson, J., Chan, V., Rehm, J., Hamilton, H., & Mann, R. E. (2012). Prevalence of Problematic Video Gaming Among Ontario Adolescents. International Journal of Mental Health and Addiction, 10, 877–889. doi: 10.1007/s11469–11012–19382–11465.CrossRefGoogle Scholar
  49. Van Rooij, A. J., Schoenmakers, T. M., Vermulst, A. A., van den Eijnden, R. J. J. M., & van de Mheen, D. (2010). Online Video Game Addiction: Identification of Addicted Adolescent Gamers. Addiction, 106, 205–212. doi: 10.1111/j.1360–0443.2010.03104.x.PubMedCrossRefGoogle Scholar
  50. Vermunt, J. K. (2008). Latent Class and Finite Mixture Models for Multilevel Data Sets. Statistical Methods in Medical Research, 17, 33–51.PubMedCrossRefGoogle Scholar
  51. Vermunt, J. K., & Magidson, J. (2002). Latent Class Cluster Analysis. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied Latent Class Analysis (pp. 89–106). New York: Cambridge University Press.CrossRefGoogle Scholar
  52. World Health Organization. (2011). BMI Classification. Retrieved September 27, 2013, from http://apps.who.int/bmi/index.jsp?introPage=intro_3.html.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Guy Faulkner
    • 1
    • 2
  • Hyacinth Irving
    • 2
  • Edward M. Adlaf
    • 2
    • 3
    • 4
  • Nigel Turner
    • 2
    • 3
  1. 1.Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoCanada
  2. 2.Centre for Addiction and Mental HealthTorontoCanada
  3. 3.Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
  4. 4.Department of PsychiatryUniversity of TorontoTorontoCanada

Personalised recommendations