Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fabrication of Sub-10-nm Plasmonic Gaps for Ultra-Sensitive Raman Spectroscopy

  • 54 Accesses


The past two decades have witnessed the explosion of activities in the field of surface enhanced Raman spectroscopy (SERS). SERS platforms employ nano-structures that excite plasmonic modes with large local electromagnetic fields localized within small gap spaces between each constituting feature. Although the research-oriented SERS platforms yield significant signal enhancements to identify even single molecules, practical SERS-based sensors have not been fully introduced yet. The main reason behind this absence is the need for a cost-effective and reliable manufacturing method for controllable fabrication of plasmonic nano-gaps over large areas. In this article, we introduced a novel manufacturing process that enables fast and scalable fabrication of highly uniform sub-10-nm gaps that could yield large SERS signals. In this process, a conventional electroplating technique is used to produce unique nano-mushroom antenna arrays on a conducting substrate, resulting in controllable gap spaces between mushroom heads. By understanding the nature of mushroom shape antenna formation, we demonstrated the control of inter-metallic gaps down to 5 nm. We showed that the manufactured nano-structures yield Raman enhancements more than 108. Providing such large SERS signals that are uniform over large areas, our cost-effective fabrication technique could be very critical to realize practical SERS devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Blackie EJ, Le Ru EC, Etchegoin PG (2009) Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J Am Chem Soc 131:14466–14472. https://doi.org/10.1021/ja905319w

  2. 2.

    Le Ru EC, Blackie E, Meyer M, Etchegoint PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803. https://doi.org/10.1021/jp0687908

  3. 3.

    Jeanmaire DL, VAN Duyne RP (1977) Surface Raman spectroelectrochemistry: Part1. Heterocyclic. J Electroanal Chem 84:1. https://doi.org/10.1016/S0022-0728(77)80224-6

  4. 4.

    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166. https://doi.org/10.1016/0009-2614(74)85388-1

  5. 5.

    Nie S, Emory SR (1994) Probing single molecules and single nanoparticles by SERS. Science 266(80):1102–1106. https://doi.org/10.1126/science.266.5193.1961

  6. 6.

    Chen C, Li Y, Kerman S, Neutens P, Willems K, Cornelissen S, Lagae L, Stakenborg T, van Dorpe P (2018) High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat Commun 9:1–9. https://doi.org/10.1038/s41467-018-04118-7

  7. 7.

    Vo-Dinh T, Vo-Dinh T, Yan F, Stokes DL (2005) Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis. Protein Nanotechnol 300:255–284. https://doi.org/10.1385/1-59259-858-7:255

  8. 8.

    Cetin AEAE, Aksu S, Turkmen M et al (2015) Theoretical and experimental analysis of subwavelength bowtie-shaped antennas. J Electromagn Waves Appl 29:1686–1698. https://doi.org/10.1080/09205071.2015.1051188

  9. 9.

    Kim NH, Hwang W, Baek K, Rohman MR, Kim J, Kim HW, Mun J, Lee SY, Yun G, Murray J, Ha JW, Rho J, Moskovits M, Kim K (2018) Smart SERS hot spots: single molecules can be positioned in a plasmonic nanojunction using host-guest chemistry. J Am Chem Soc 140:4705–4711. https://doi.org/10.1021/jacs.8b01501

  10. 10.

    Chen W, Zhang S, Kang M, Liu W, Ou Z, Li Y, Zhang Y, Guan Z, Xu H (2018) Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light Sci Appl 7:1–11. https://doi.org/10.1038/s41377-018-0056-3

  11. 11.

    Zhou X, Deeb C, Kostcheev S et al (2015) Selective functionalization of the nanogap of a plasmonic dimer. ACS Photonics 2:121–129. https://doi.org/10.1021/ph500331c

  12. 12.

    Nam JM, Oh JW, Lee H, Suh YD (2016) Plasmonic nanogap-enhanced Raman scattering with nanoparticles. Acc Chem Res 49:2746–2755. https://doi.org/10.1021/acs.accounts.6b00409

  13. 13.

    Yang Z, Lin K, Meng L et al (2013) Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. ACS Nano 8:528–536. https://doi.org/10.1021/nn405073h

  14. 14.

    Shi X, Verschueren D, Pud S, Dekker C (2018) Integrating sub-3 nm plasmonic gaps into solid-state nanopores. Small 14:1–6. https://doi.org/10.1002/smll.201703307

  15. 15.

    Djaker N, Hostein R, Devaux E et al (2010) Surface enhanced Raman scattering on a single nanometric aperture. J Phys Chem C 114:16250–16256. https://doi.org/10.1021/jp104971p

  16. 16.

    Galarreta B, Rupar I, Young A, Lagugné-Labarthet F (2011) Mapping hot-spots in hexagonal arrays of metallic nanotriangles. J Phys Chem C 115:15318–15323

  17. 17.

    Liu J, Chen L, Duan B et al (2016) Engineering aggregation-induced SERS-active porous Au@ZnS multi-yolk-shell structures for visualization of guest species loading. RSC Adv 6:38690–38696. https://doi.org/10.1039/c6ra04432h

  18. 18.

    Budnyk AP, Damin A, Agostini G, Zecchina A (2010) Gold nanoparticle aggregates immobilized on high surface area silica substrate for efficient and clean SERS applications. J Phys Chem C 114:3857–3862. https://doi.org/10.1021/jp9112816

  19. 19.

    Das Gupta T, Martin-Monier L, Yan W, Bris A, Nguyen-Dang T, Page AG, Ho KT, Yesilköy F, Altug H, Qu Y, Sorin F (2019) Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities, Nat Nanotechnol. 14:320. https://doi.org/10.1038/s41565-019-0362-9

  20. 20.

    Varghese B, Cheong FC, Sindhu S, Yu T, Lim CT, Valiyaveettil S, Sow CH (2006) Size selective assembly of colloidal particles on a template by directed self-assembly technique. Langmuir 22:8248–8252. https://doi.org/10.1021/la060732q

  21. 21.

    Waters RF, Ohtsu A, Naya M et al (2016) Templated assembly of metal nanoparticle films on polymer substrates. Appl Phys Lett:109. https://doi.org/10.1063/1.4973202

  22. 22.

    Qi H, Hao H, Xingce F et al (2017) Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays. Nanotechnology 28:105301. https://doi.org/10.1088/1361-6528/aa596d

  23. 23.

    Hughes R, Menumerov E, Neretina S (2017) When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces. Hybrid strategies in nanolithography Engineering metallic nanostructures for plasmonics and nanophot. Nanotechnology 28:282002

  24. 24.

    Jiwei Q, Yudong L, Ming Y, Qiang W, Zongqiang C, Wudeng W, Wenqiang L, Xuanyi Y, Jingjun X, Qian S (2013) Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing au film on the cicada wing. Nanoscale Res Lett 8:1–6. https://doi.org/10.1186/1556-276X-8-437

  25. 25.

    Zheng P, Cushing SK, Suri S, Wu N (2015) Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Phys Chem Chem Phys 17:21211–21219. https://doi.org/10.1039/c4cp05291a

  26. 26.

    Yilmaz C, Cetin AEAE, Goutzamanidis G, Huang J, Somu S, Altug H, Wei D, Busnaina A (2014) Three-dimensional crystalline and homogeneous metallic nanostructures using directed assembly of nanoparticles. ACS Nano 8:4547–4558. https://doi.org/10.1021/nn500084g

  27. 27.

    Faulds K, Littleford RE, Graham D et al (2004) Comparison of surface-enhanced resonance Raman scattering from unaggregated and aggregated nanoparticles. Anal Chem 76:592–598

  28. 28.

    Willets KA, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607

  29. 29.

    Cetin AEAEAE, Etezadi D, Altug H (2014) Accessible nearfields by nanoantennas on nanopedestals for ultrasensitive vibrational spectroscopy. Adv Opt Mater 2:866–872. https://doi.org/10.1002/adom.201400171

  30. 30.

    Cetin AEAEAE, Coskun AFAF, Galarreta BCBCBC et al (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci Appl 3. https://doi.org/10.1038/lsa.2014.3

  31. 31.

    Liberman V, Yilmaz C, Bloomstein TM et al (2010) A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates. Adv Mater 22:4298–4302. https://doi.org/10.1002/adma.201001670

Download references


A.E.C. acknowledges Izmir Biomedicine and Genome Center Start-Up Research Grant and the BAGEP Award of the Science Academy.

Author information

Correspondence to Arif E. Cetin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cetin, A.E., Yilmaz, C., Galarreta, B.C. et al. Fabrication of Sub-10-nm Plasmonic Gaps for Ultra-Sensitive Raman Spectroscopy. Plasmonics (2020). https://doi.org/10.1007/s11468-020-01137-3

Download citation


  • Plasmonics
  • Surface enhanced Raman spectroscopy
  • Nano-fabrication