Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Carrier Dynamics in Ultrathin Gold Nanowires: Role of Auger Processes

Abstract

Carrier dynamics in metallic nanostructures is strongly influenced by their confining dimensions. Gold nanoparticles of size \(\sim ~2\) nm which fill the transition space separating metallic and non-metallic behavior. In this work, we report carrier dynamics in high aspect ratio ultrathin gold nanowires (Au-UNWs) of average diameter \(\sim \) 2 nm using pump (3.1 eV) and coherent white light continuum as probe in the spectral range of 1.15 to 2.75 eV. The transient carrier dynamics in Au-UNWs under extreme excitation regime is slower than predicted by the often used two-temperature model. We identify Auger-assisted carrier heating process which slows down the hot carrier cooling dynamics. The rate equation model fitted to the data yields an estimate of Auger coefficient for gold nanostructures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Link S, Burda C, Wang ZL, El-Sayed MA (1999) Electron dynamics in gold and gold-silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation. J Chem Phys 111:1255

  2. 2.

    Minutella E, Schulz F, Lange H (2017) Excitation-dependence of plasmon-induced hot electrons in gold nanoparticles. J Phys Chem Lett 8:4925

  3. 3.

    Higaki T, Zhou M, Lambright KJ, Kirschbaum K, Sfeir MY, Jin R (2018) Sharp transition from nonmetallic Au246 to metallic Au279 with nascent surface plasmon resonance. J Am Chem Soc 140:5691

  4. 4.

    Zhou M, Zeng C, Chen Y, Zhao S, Sfeir MY, Zhu M, Jin R (2016) Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat Comm 7:13240

  5. 5.

    Voisin C, Christofilos D, Loukakos PA, Del Fatti N, Vallée F, Lermé J, Gaudry M, Cottancin E, Pellarin M, Broyer M (2004) Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles. Phys Rev B 69:195416

  6. 6.

    Arbouet A, Voisin C, Christofilos D, Langot P, Del Fatti N, Vallée F, Lermé J, Celep G, Cottancin E, Gaudry M, Pellarin M, Broyer M, Maillard M, Pileni MP, Treguer M (2003) Electron-phonon scattering in metal clusters. Phys Rev Lett 90:177401

  7. 7.

    Voisin C, Christofilos D, Del Fatti N, Vallée F, Prével B, Cottancin E, Lermé J, Pellarin M, Broyer M (2000) Size-dependent electron-electron interactions in metal nanoparticles. Phys Rev Lett 85:2200

  8. 8.

    Ekardt W (1984) Work function of small metal particles: self-consistent spherical jellium-background model. Phys Rev B 29:1558

  9. 9.

    Halder A, Ravishankar N (2007) Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv Mater 19:1854

  10. 10.

    Maurer JHM, González-garcía L, Reiser B, Kanelidis I, Kraus T (2016) Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics. Nano Lett 16:2921

  11. 11.

    Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Comm 5:3132

  12. 12.

    Xu J, Wang H, Liu C, Yang Y, Chen T, Wang Y, Wang F, Liu X, Xing B, Chen H (2010) Mechanical nanosprings: induced coiling and uncoiling of ultrathin Au nanowires. J Am Chem Soc 132:11920

  13. 13.

    Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841

  14. 14.

    Zhu W, Zhang YJ, Zhang H, Lv H, Li Q, Michalsky R, Peterson AA, Sun S (2014) Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc 136:16132

  15. 15.

    Jiang X, Qiu X, Fu G, Sun J, Huang Z, Sun D, Xu L, Zhou J, Tang Y (2018) Highly simple and rapid synthesis of ultrathin gold nanowires with (111)-dominant facets and enhanced electrocatalytic properties. J Mater Chem A 6:17682

  16. 16.

    Chen Y, Ouyang Z, Gu M, Cheng W (2012) Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv Mater 25:80

  17. 17.

    Roy A, Kundu S, Müller K, Rosenauer A, Singh S, Pant P, Gururajan MP, Kumar P, Weissmüller J, Singh AK, Ravishankar N (2014) Wrinkling of atomic planes in ultrathin Au nanowires. Nano Lett 14:4859

  18. 18.

    Chandni U, Kundu P, Kundu S, Ravishankar N, Ghosh A (2013) Tunability of electronic states in ultrathin gold nanowires. Adv Mater 25:2486

  19. 19.

    Takahata R, Yamazoe S, Koyasu K, Tsukuda T (2014) Surface plasmon resonance in gold ultrathin nanorods and nanowires. J Am Chem Soc 136:8489

  20. 20.

    Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG (2000) Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287:1011

  21. 21.

    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

  22. 22.

    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

  23. 23.

    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

  24. 24.

    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15

  25. 25.

    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

  26. 26.

    Tcherniak A, Dominguez-Medina S, Chang WS, Swanglap P, Slaughter LS, Landes CF, Link S (2011) One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods. J Phys Chem C 115:15938

  27. 27.

    Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517

  28. 28.

    Varnavski OP, Mohamed MB, El-Sayed MA, Goodson T (2003) Relative enhancement of ultrafast emission in gold nanorods. J Phys Chem B 107:3101

  29. 29.

    Liu J, Duchesne PN, Yu M, Jiang X, Ning X, Vinluan IIIRD, Zhang P, Zheng J (2016) Luminescent gold nanoparticles with size-independent emission. Angew Chem Int Ed 55:8894

  30. 30.

    Lei Y, Zhang LD, Meng GW, Li GH, Zhang XY, Liang CH, Chen W, Wang SX (2001) Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett 78:1125

  31. 31.

    Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL (2002) Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 106:3410

  32. 32.

    Imura K, Okamoto H (2009) Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation. J Phys Chem C 113:11756

  33. 33.

    Liu JG, Zhang H, Link S, Nordlander P (2017) Relaxation of plasmon-induced hot carriers. ACS Photonics 5:2584

  34. 34.

    Dulkeith E, Niedereichholz T, Klar TA, Feldmann J, Plessen GV, Gittins DI, Mayya KS, Caruso F (2004) Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 70:205424

  35. 35.

    Roy A, Pandey T, Ravishankar N, Singh AK (2014) Semiconductor-like sensitivity in metallic ultrathin gold nanowire-based sensors. J Phys Chem C 118:18676

  36. 36.

    Perdew JP (1985) Density functional theory and the band gap problem. Int J Quantum Chem 28:497

  37. 37.

    Sun CK, Vallée F, Acioli LH, Ippen EP, Fujimoto JG (1994) Femtosecond-tunable measurement of electron thermalization in gold. Phys Rev B 50:15337

  38. 38.

    Hu H, Duan H, Yang JKW, Shen ZX (2012) Plasmon-modulated photoluminescence of individual gold nanostructures. ACS Nano 6:10147

  39. 39.

    Yu K, Polavarapu L, Xu QH (2011) Excitation wavelength and fluence dependent femtosecond transient absorption studies on electron dynamics of gold nanorods. J Phys Chem A 115:3820

  40. 40.

    Harutyunyan H, Martinson ABF, Rosenmann D, Khorashad LK, Besteiro LV, Govorov AO, Wiederrecht GP (2015) . Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots 10:770

  41. 41.

    Cai YY, Liu JG, Tauzin LJ, Huang D, Sung E, Zhang H, Joplin A, Chang WS, Nordlander P, Link S (2018) Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers. ACS Nano 12:976

  42. 42.

    Masia F, Langbein W, Borri P (2012) Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope. Phys Rev B 85:235403

  43. 43.

    Bilotsky Y, Tomchuk PM (2006) Size effect in electron-lattice energy exchange in small metal particles. Surf Sci 600:4702

  44. 44.

    Belotskii ED, Tomchuk PM (1992) Surface electron-phonon energy exchange in small metallic particles. Int J Electronics 73:955

  45. 45.

    Robel I, Bunker BA, Kamat PV, Kuno M (2006) Exciton recombination dynamics in CdSe nanowires: bimolecular to three-carrier Auger kinetics. Nano Lett 6:1344

  46. 46.

    Gao B, Hartland GV, Huang L (2013) Transient absorption spectroscopy of excitons in an individual suspended metallic carbon nanotube. J Phys Chem Lett 4:3050

  47. 47.

    Brida D, Tomadin A, Manzoni C, Kim YJ, Lombardo A, Milana S, Nair RR, Novoselov KS, Ferrari AC, Cerullo G, Polini M (2013) Ultrafast collinear scattering and carrier multiplication in graphene. Nature Comm 4:1987

  48. 48.

    Trinh MT, Wu X, Niesner D, Zhu XY (2015) Many-body interactions in photo-excited lead iodide perovskite. J Mater Chem A 3:9285

  49. 49.

    Corkum PB, Brunel F, Sherman NK, Srinivasan-Rao T (1988) Thermal response of metals to ultrashort-pulse laser excitation. Phys Rev Lett 61:2886

  50. 50.

    Park S, Pelton M, Liu M, Guyot-Sionnest P, Scherer NF (2007) Ultrafast resonant dynamics of surface plasmons in gold nanorods. J Phys Chem C 111:116

  51. 51.

    Sun CK, Vallée F, Acioli L, Ippen EP, Fujimoto JG (1993) Femtosecond investigation of electron thermalization in gold. Phys Rev B 48:12365

  52. 52.

    Groeneveld RHM, Sprik R, Lagendijk A (1995) Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys Rev B 51:11433

  53. 53.

    Butet J, Brevet PF, Martin OJ (2015) Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 9:10545

  54. 54.

    Zhang K, Rabin O (2018) Plasmonic Nanoarcs—Tunable plasmonic elements for Non-Linear optical metamaterials. In: IEEE photonics conference (IPC), IEEE

Download references

Acknowledgements

GP is thankful to Satyendra, Mithun, and Vikas for their help during PL and time-resolved measurements.

Funding

This study is supported by the Department of Science and Technology, India under the Nanomission Project for financial support.

Author information

Correspondence to A. K. Sood.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prakash, G., Kundu, S., Roy, A. et al. Carrier Dynamics in Ultrathin Gold Nanowires: Role of Auger Processes. Plasmonics (2020). https://doi.org/10.1007/s11468-020-01125-7

Download citation

Keywords

  • Plasmonics
  • Ultrathin nanowires
  • Ultrafast spectroscopy
  • Transient absorption