pp 1–8 | Cite as

Influence of H2 Atmosphere Annealing on Plasmonic Properties of Cu-Containing Silica Films Sputtered on Amorphous Silica

  • José A. JiménezEmail author
  • Mariana Sendova


Copper-doped silica films have been deposited on amorphous silica (fused quartz) by magnetron co-sputtering. The resulting films were characterized for copper loading/thickness by Rutherford backscattering spectrometry, and the optical properties were evaluated by absorption and photoluminescence spectroscopies. The films were subjected to thermal treatment under a 5% H2−95% Ar-reducing atmosphere and further evaluated for surface plasmon resonance (SPR) characteristics. In addition, the occurrence of Cu nanoparticles (NPs) was evaluated by transmission electron microscopy. It is indicated that the films have effective permeability for H2, and consequently, the reduction of ionic copper takes place supporting the nucleation and growth of Cu NPs. Interestingly, along with the increase in absorption intensity of Cu NPs, the processing leads consistently to significant blue shifts in the SPR peaks. Absorption spectra were then simulated by Mie theory calculations for dielectric-embedded Cu NPs in an effort to understand the influence of particle size and medium refractive index on the SPR.


Thin films Optical materials Surface plasmon resonance 



The authors thank Marushka Sendova-Vassileva for film deposition, Jean C. Pivin for RBS analyses, Miguel A. García for the program code modeling Mie resonances, Prof. Michael Lufaso from University of North Florida (UNF) for the reducing atmosphere processing, and the Major Analytical Instrumentation Center at University of Florida for TEM. J.A. Jiménez is also grateful for the participation and experimental support (e.g., collection of absorption spectra) of student Joseph Hockenbury at UNF.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11468_2019_1116_MOESM1_ESM.docx (151 kb)
ESM 1 (DOCX 150 kb)


  1. 1.
    Chakraborty P (1998) Metal nanoclusters in glasses as non-linear photonic materials. J Mater Sci 33:2235–2249CrossRefGoogle Scholar
  2. 2.
    Yamane M, Asahara Y (2000) Glasses for photonics. Cambridge University Press, UKCrossRefGoogle Scholar
  3. 3.
    Uchida K, Kaneko S, Omi S, Hata C, Tanji H, Asahara Y, Ikushima AJ, Tokisaki T, Nakamura A (1994) Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles. J Opt Soc Am B 11:1236–1243CrossRefGoogle Scholar
  4. 4.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Ganeev RA, Ryasnyansky AI, Stepanov AL, Usmanov T (2003) Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range. Phys Status Solidi B 238:R5–R7CrossRefGoogle Scholar
  6. 6.
    Ganeev RA, Ryasnyansky AI, Stepanov AL, Usmanov T (2004) Saturated absorption and reverse saturated absorption of Cu:SiO2 at λ = 532 nm. Phys Status Solidi B 241:R1–R4CrossRefGoogle Scholar
  7. 7.
    Ganeev RA, Ryasnyansky AI, Stepanov AL, Usmanov T (2004) Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ = 1064 nm. Phys Status Solidi B 241:935–944CrossRefGoogle Scholar
  8. 8.
    Tanahashi I, Yoshida M, Manabe Y, Tohda T, Sasaki S, Tokizaki T, Nakamura A (1994) Preparation and nonlinear optical properties of Ag/SiO2 glass composite thin films. Jpn J Appl Phys 33:L1410–L1412CrossRefGoogle Scholar
  9. 9.
    Tanahashi I, Manabe Y, Tohda T, Sasaki S, Nakamura A (1996) Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J Appl Phys 79:1244–1249CrossRefGoogle Scholar
  10. 10.
    Walters G, Parkin IP (2009) The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. J Mater Chem 19:574–590CrossRefGoogle Scholar
  11. 11.
    Mohapatra S, Mishra YK, Warrier AM, Philip R, Sahoo S, Arora AK, Avasthi DK (2012) Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper–silica nanocomposites. Plasmonics 7:25–31CrossRefGoogle Scholar
  12. 12.
    De G, Gusso M, Tapfer L, Catalano M, Gonella F, Mattei G, Mazzoldi P, Battaglin G (1996) Annealing behavior of silver, copper, and silver–copper nanoclusters in a silica matrix synthesized by the sol-gel technique. J Appl Phys 80:6734–6739CrossRefGoogle Scholar
  13. 13.
    Liu X, Cai W, Bi H (2002) Optical absorption of copper nanoparticles dispersed within pores of monolithic mesoporous silica. J Mater Res 17:1125–1128CrossRefGoogle Scholar
  14. 14.
    Cattaruzza E, Battaglin G, Canton P, Finotto T, Sada C (2006) Copper-based nanocluster composite silica films by rf-sputtering deposition. Mater Sci Eng C 26:1092–1096CrossRefGoogle Scholar
  15. 15.
    Chahadih A, El Hamzaoui H, Cristini O, Bigot L, Bernard R, Kinowski C, Bouazaoui M, Capoen B (2012) H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms. Nanoscale Res Lett 7:487, 6 pagesCrossRefGoogle Scholar
  16. 16.
    Jiménez JA, Sendova M, McAlpine K (2012) Revealing oxidation kinetics of dielectric-embedded Ag nanoparticles via in situ optical microspectroscopy. Chem Phys Lett 523:107–112CrossRefGoogle Scholar
  17. 17.
    Jiménez JA, Sendova M, Sendova-Vassileva M (2011) Real-time monitoring of plasmonic evolution in thick Ag:SiO2 films: nanocomposite optical tuning. ACS Appl Mater Interfaces 3:447–454CrossRefGoogle Scholar
  18. 18.
    Jiménez JA, Sendova M, Puga-Lambers M (2013) Oxidation kinetics of plasmonic Ag particles in SiO2 nanofilms: interlinking particle size to atmosphere-film-substrate system properties. J Phys Chem Solids 74:14871491CrossRefGoogle Scholar
  19. 19.
    Jiménez JA (2014) Efficient stabilization of Cu+ ions in phosphate glasses via reduction of Cu2+ by Sn2+ during ambient atmosphere melting. J Mater Sci 49:4387–4393CrossRefGoogle Scholar
  20. 20.
    Jiménez JA (2014) Optical properties of Cu nanocomposite glass obtained via CuO and SnO co-doping. Appl Phys A Mater Sci Process 114:1369–1376CrossRefGoogle Scholar
  21. 21.
    Manikandan D, Mohan S, Nair KGM (2003) Photoluminescence of embedded copper nanoclusters in soda-lime glass. Mater Lett 57:1391–1394CrossRefGoogle Scholar
  22. 22.
    García MA (1999) Aplicación de espectroscopías ópticas al estudio de recubrimientos sol-gel y cerámicas tenaces. PhD dissertation (Universidad Complutense, Madrid)Google Scholar
  23. 23.
    García MA, Llopis J, Paje SE (1999) A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films. Chem Phys Lett 315:313–320CrossRefGoogle Scholar
  24. 24.
    Jiménez JA, Sendova M (2011) In situ optical microspectroscopy approach for the study of metal transport in dielectrics via temperature- and time-dependent plasmonics: Ag nanoparticles in SiO2 films. J Chem Phys 134:054707 5 pagesCrossRefGoogle Scholar
  25. 25.
    Hövel H, Fritz S, Hilgel A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178–18188CrossRefGoogle Scholar
  26. 26.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  27. 27.
    Fujimoto Y, Nakatsuka M (1997) Spectroscopic properties and quantum yield of Cu-doped SiO2 glass. J Lumin 75:213–219CrossRefGoogle Scholar
  28. 28.
    Jiménez JA (2016) Absorption spectroscopy analysis of calcium–phosphate glasses highly doped with monovalent copper. ChemPhysChem 17:1642–1646CrossRefGoogle Scholar
  29. 29.
    Ikeda H, Murata T, Fujino S (2015) Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO2-PVA nanocomposite. Mater Chem Phys 162:431–435CrossRefGoogle Scholar
  30. 30.
    Liu H, Gan F (1986) Luminescence of Cu+ ions in phosphate glass. J Non-Cryst Solids 80:447–454CrossRefGoogle Scholar
  31. 31.
    Guilherme K, Hayakawa T, Nogami M (2011) Copper reduction and hydroxyl formation by hydrogen process in alumino-silicate glasses. J Phys Chem Solids 72:151–157CrossRefGoogle Scholar
  32. 32.
    Miotello A, De Marchi G, Mattei G, Mazzoldi P (1998) Ionic transport model for hydrogen permeation inducing silver nanocluster formation in silver–sodium exchanged glasses. Appl Phys A Mater Sci Process 67:527–529CrossRefGoogle Scholar
  33. 33.
    El Hamzaoui H, Capoen B, Razdobreev I, Bouazaoui M (2017) In situ growth of luminescent silver nanoclusters inside bulk sol-gel silica glasses. Mater Res Express 4:076201 6 pagesCrossRefGoogle Scholar
  34. 34.
    Lutz T, Estournès C, Merle JC, Guille JL (1997) Optical properties of copper-doped silica gels. J Alloys Compd 262-263:438–442CrossRefGoogle Scholar
  35. 35.
    Jiménez JA, Sendova M (2017) Catalyst role of Nd3+ ions for the precipitation of silver nanoparticles in phosphate glass. J Alloys Compd 691:44–50CrossRefGoogle Scholar
  36. 36.
    Kibar R, Çetin A, Can N (2009) Effect of thermal treatment on linear optical properties of Cu nanoclusters. Phys B 404:105–110CrossRefGoogle Scholar
  37. 37.
    Zhang XD, Xi JF, Shen YY, Zhang LH, Zhu F, Wang Z, Xue YH, Liu CL (2011) Thermal evolution and optical properties of Cu nanoparticles in SiO2 by ion implantation. Opt Mater 33:570–575CrossRefGoogle Scholar
  38. 38.
    Manikandan P, Manikandan D, Manikandan E, Christy Ferdinand A (2014) Structural, optical and micro-Raman scattering studies of nanosized copper ion (Cu+) exchanged soda lime glasses. Plasmonics 9:637–643CrossRefGoogle Scholar
  39. 39.
    Jiménez JA (2015) Silicon as reducing agent for controlled production of plasmonic copper nanocomposite glasses: a spectroscopic study. J Electron Mater 44:4418–4423CrossRefGoogle Scholar
  40. 40.
    Sendova M, Jiménez JA, Smith R, Rudawski N (2015) Kinetics of copper nanoparticle precipitation in phosphate glass: an isothermal plasmonic approach. Phys Chem Chem Phys 17:1241–1246CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Chemistry & PhysicsAugusta UniversityAugustaUSA
  2. 2.Optical Spectroscopy & Nano-Materials LabNew College of FloridaSarasotaUSA

Personalised recommendations