pp 1–8 | Cite as

Au@MoS2@Au Hierarchical Nanostructures for High-Sensitivity and Recyclable SERS Device

  • Shaohui Guo
  • Xingang Ren
  • Xuanhua LiEmail author
Original Article


The surface-enhanced Raman scattering (SERS) is widely used in chemical analysis and environmental monitoring. Herein, the Au@MoS2@Au three core–shell hierarchical architecture is designed and synthesized through a hydrothermal method and spray process for a high-sensitivity Raman sensor. The enhanced Raman signals achieved in the hierarchical nanostructure are attributed to the two aspects. One is the local electromagnetic field from Au nanoparticles (NPs), including the surface satellites Au NPs and the core Au NPs, and the other is the chemical enhancement from MoS2 nanosheets. As a result, a detection limit of the probe molecule (RhB) as low as 10−10 M is obtained via using this hierarchical Raman substrate. In addition, the hierarchical Au@MoS2@Au Raman substrate can be recycled utilized because of MoS2 photocatalytic ability. The unique Au@MoS2@Au three core–shell nanostructure shows momentous potential to realize a SERS substrate with high-sensitivity and recyclable property.


Surface-enhanced Raman scattering Au MoS2 Core-shell 


Funding Information

This research is financially supported by the Basic Research Fund for Free Exploration in Shenzhen (Grant nos. JCYJ20170815161437298, JCYJ20180306171402878), the National Natural Science Foundation of China (51571166, 21603175), the project of Shaanxi Young Stars in Science and Technology (2017KJXX-18), and the Fundamental Research Funds for the Central Universities (3102019ghxm003, 3102019JC005). We thank the members from the Analytical and Testing Center of Northwestern Polytechnical University for the help on TEM characterization.

Supplementary material

11468_2019_1090_MOESM1_ESM.docx (389 kb)
ESM 1 (DOCX 388 kb)


  1. 1.
    Tran V, Walkenfort B, Konig M, Salehi M, Schlucker S (2019) Rapid, quantitative, and ultrasensitive point-of-care testing: a portable SERS reader for lateral flow assays in clinical chemistry. Angew Chem Int Edit 58:442–446CrossRefGoogle Scholar
  2. 2.
    Koker T, Tang N, Tian C, Zhang W, Wang XD, Martel R, Pinaud F (2018) Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nat Commun 9:607CrossRefGoogle Scholar
  3. 3.
    Chen C, Li Y, Kerman S, Neutens P, Willems K, Cornelissen S, Lagae L, Stakenborg T, Van Dorpe P (2018) High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat Commun 9:1733CrossRefGoogle Scholar
  4. 4.
    Lee HK, Lee YH, Koh CSL, Gia CPQ, Han XM, Lay CL, Sim HYF, Kao YC, An Q, Ling XY (2019) Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem Soc Rev 48:731–756CrossRefGoogle Scholar
  5. 5.
    Jeong S, Kang H, Cha MG, Lee SG, Kim J, Chang H, Lee YS, Jeong DH (2019) Two-dimensional SERS encoding method for on-bead peptide sequencing in high-throughput bioanalysis. Chem Commun 55:2700–2703CrossRefGoogle Scholar
  6. 6.
    Wang XT, Shi WX, Wang SX, Zhao HW, Lin J, Yang Z, Chen M, Guo L (2019) Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS cctivity. J Am Chem Soc 141:5856–5862CrossRefGoogle Scholar
  7. 7.
    Szlag VM, Rodriguez RS, He JY, Hudson-Smith N, Kang H, Le N, Reineke TM, Haynes CL (2018) Molecular affinity agents for intrinsic surface-enhanced Raman scattering (SERS) sensors. ACS Appl Mater Inter 10:31825–31844CrossRefGoogle Scholar
  8. 8.
    Lin J, Hao W, Shang Y, Wang XT, Qiu DL, Ma GS, Chen C, Li SZ, Guo L (2018) Direct experimental observation of facet-dependent SERS of Cu2O polyhedra. Small 14:1703274CrossRefGoogle Scholar
  9. 9.
    Wang SJ, Li Z, Zhang YY, Liu XR, Han J, Li XH, Liu ZK, Liu SZ, Choy WCH (2018) Water-soluble triazolium ionic-liquid-induced surface self-assembly to enhance the stability and efficiency of perovskite solar cells. Adv Funct Mater 29:1900417CrossRefGoogle Scholar
  10. 10.
    Reokrungruang P, Chatnuntawech I, Dharakul T, Bamrungsap S (2019) A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sensor Actuat B-Chem 285:462–469CrossRefGoogle Scholar
  11. 11.
    Liang ZH, Zhou J, Petti L, Shao LY, Jiang T, Qing YP, Xie SS, Wu GY, Mormile P (2019) SERS-based cascade amplification bioassay protocol of miRNA-21 by using sandwich structure with biotin-streptavidin system. Analyst 144:1741–1750CrossRefGoogle Scholar
  12. 12.
    Heck C, Kanehira Y, Kneipp J, Bald I (2018) Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses. Angew Chem Int Edit 57:7444–7447CrossRefGoogle Scholar
  13. 13.
    Liyanage T, Rael A, Shaffer S, Zaidi S, Goodpaster JV, Sardar R (2018) Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst 143:2012–2022CrossRefGoogle Scholar
  14. 14.
    Holler RPM, Dulle M, Thoma S, Mayer M, Steiner AM, Forster S, Fery A, Kuttner C, Chanana M (2016) Protein-assisted assembly of modular 3D plasmonic raspberry-like core/satellite nanoclusters: correlation of structure and optical properties. ACS Nano 10:5740–5750CrossRefGoogle Scholar
  15. 15.
    Szekeres GP, Kneipp J (2019) SERS probing of proteins in gold nanoparticle agglomerates. Front Chem 7:30CrossRefGoogle Scholar
  16. 16.
    Jiao WL, Chen C, You WB, Zhang J, Liu JW, Che R (2019) Yolk-shell Fe/Fe4N@Pd/C magnetic nanocomposite as an efficient recyclable ORR electrocatalyst and SERS substrate. Small 15:1805032CrossRefGoogle Scholar
  17. 17.
    Li XH, Guo SH, Kan CX, Zhu JM, Tong TT, Ke SL, Choy WCH, Wei BQ (2016) Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy 30:549–558CrossRefGoogle Scholar
  18. 18.
    Qiu HW, Wang MQ, Li L, Li JJ, Yang Z, Cao MH (2018) Hierarchical MoS2-microspheres decorated with 3D AuNPs arrays for high-efficiency SERS sensing. Sensor Actuat B-Chem 255:1407–1414CrossRefGoogle Scholar
  19. 19.
    Zhang H, Zhang WY, Gao X, Man PH, Sun Y, Liu CD, Li Z, Xu YY, Man BY, Yang C (2019) Formation of the AuNPs/GO@MoS2/AuNPs nanostructures for the SERS application. Sensor Actuat B-Chem 282:809–817CrossRefGoogle Scholar
  20. 20.
    Zuo P, Jiang L, Li X, Ran P, Li B, Song AS, Tian MY, Ma TB, Guo BS, Qu LT, Lu YF (2019) Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS2 defect sites for photoluminescence control and SERS enhancement. Nanoscale 11:485–494CrossRefGoogle Scholar
  21. 21.
    Ghopry SA, Alamri MA, Goul R, Sakidja R, Wu JZ (2019) Extraordinary sensitivity of surface-enhanced Raman spectroscopy of molecules on MoS2 (WS2) nanodomes/graphene van der Waals heterostructure substrates. Adv Opt Mater 7:1801249CrossRefGoogle Scholar
  22. 22.
    Guo SH, Yang L, Zhang YY, Huang ZX, Ren XG, Sha WEI, Li XH (2018) Enhanced hydrogen evolution via interlaced Ni3S2/MoS2 heterojunction photocatalysts with efficient interfacial contact and broadband absorption. J Alloy Compd 749:473–480CrossRefGoogle Scholar
  23. 23.
    Guo SH, Li XH, Zhu JM, Tong TT, Wei BQ (2016) Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability. Small 12:5692–5701CrossRefGoogle Scholar
  24. 24.
    Liu K, Bai YC, Zhang L, Yang ZB, Fan QK, Zheng HQ, Yin YD, Gao CB (2016) Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett 16:3675–3681CrossRefGoogle Scholar
  25. 25.
    Lu PQ, Lang JW, Weng ZP, Rahimi-Iman A, Wu HZ (2018) Hybrid structure of 2D layered GaTe with Au nanoparticles for ultrasensitive detection of aromatic molecules. ACS Appl Mater Inter 10:1356–1362CrossRefGoogle Scholar
  26. 26.
    Abid I, Chen WB, Yuan JT, Najmaei S, Penafiel EC, Pechou R, Large N, Lou J, Mlayah A (2018) Surface enhanced resonant Raman scattering in hybrid MoSe2@Au nanostructures. Opt Express 26:29411–29423CrossRefGoogle Scholar
  27. 27.
    Liu YY, Liu Y, Xing Y, Guo XY, Ying Y, Wu YP, Wen Y, Yang HF (2018) Magnetically three-dimensional Au nanoparticles/reduced graphene/nickel foams for Raman trace detection. Sensor Actuat B-Chem 273:884–890CrossRefGoogle Scholar
  28. 28.
    Su S, Zhang C, Yuwen LH, Chao J, Zuo XL, Liu XF, Song CY, Fan CH, Wang LH (2014) Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanopartictes. ACS Appl Mater Inter 6:18735–18741CrossRefGoogle Scholar
  29. 29.
    Guo SH, Li XH, Ren XG, Yang L, Zhu JM, Wei BQ (2018) Optical and electrical enhancement of hydrogen evolution by MoS2@MoO3 core-shell nanowires with designed tunable plasmon resonance. Adv Funct Mater 28:1802567CrossRefGoogle Scholar
  30. 30.
    Li XH, Guo SH, Li W, Ren XG, Su J, Song Q, Sobrido AJ, Wei BQ (2019) Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution. Nano Energy 57:388–397CrossRefGoogle Scholar
  31. 31.
    Yang L, Guo SH, Li XH (2017) Au nanoparticles@MoS2 core-shell structures with moderate MoS2 coverage for efficient photocatalytic water splitting. J Alloy Compd 706:82–88CrossRefGoogle Scholar
  32. 32.
    Phung TL, Nguyen TKG (2018) Study on synthesis of MoS2 modified g-C3N4 materials for treatment of direct black 38 dye. J Viet Env 9:169–176Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
  2. 2.Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU)Xi’anChina
  3. 3.Key Laboratory of Intelligent Computing & Signal Processing, Ministry of EducationAnhui UniversityHefeiChina

Personalised recommendations