pp 1–7 | Cite as

Beam Manipulation by Hybrid Plasmonic-Dielectric Metasurfaces

  • Kamalodin Arik
  • Omid HemmatyarEmail author
  • Zahra Kavehvash


A hybrid plasmonic-dielectric metasurface is proposed in order to manipulate beam propagation in desired manners. The metasurface is composed of patterned hybrid graphene-silicon nano-disks deposited on a low-index substrate, namely silica. It is shown that the proposed hybrid metasurface simultaneously benefits from the advantages of graphene-based metasurfaces and dielectric ones. Specially, we show that the proposed hybrid metasurface not only provides reconfigurability, just like previously proposed graphene-based metasurfaces, but also similar to dielectric metasurfaces, is of low loss and CMOS-compatible. Such exceptional features give the metasurface exceptional potentials to realize high efficient optical components. To demonstrate the latter point, focusing and anomalous reflection are performed making use of the proposed hybrid structure as examples of two well-known optical functionalities. This work opens up a new route in realization of reconfigurable meta-devices with widely real-world applications which cannot be achieved with their passive counterparts.


Beam manipulation Metasurface Graphene Focusing Anomalous reflection 



  1. 1.
    Brewster D (1852) On an account of a rock-crystal lens and decomposed glass found in Niniveh. Die Fortschritte der Physik im Jahre: 355–356Google Scholar
  2. 2.
    Pfeiffer C, Grbic A (2013) Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 110(19): 197401CrossRefGoogle Scholar
  3. 3.
    AbdollahRamezani S, Arik K, Farajollahi S, Khavasi A, Kavehvash Z (2015) Beam manipulating by gate-tunable graphene-based metasurfaces. Opt Lett 40(22):5383–5386CrossRefGoogle Scholar
  4. 4.
    Yu N, Genevet P, Aieta F, Kats MA, Blanchard R, Aoust G, Tetienne J-P, Gaburro Z, Capasso F (2013) Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J Sel Top Quantum Electron 19(3):4700423–4700423CrossRefGoogle Scholar
  5. 5.
    Munk BA (2000) Frequency selective surfaces theory and design. Wiley, HobokenCrossRefGoogle Scholar
  6. 6.
    Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N (2014) Performing mathematical operations with metamaterials. Science 343(6167):160–163CrossRefGoogle Scholar
  7. 7.
    Youssefi A, Zangeneh-Nejad F, Abdollahramezani S, Khavasi A (2016) Analog computing by brewster effect. Opt Lett 41(15):3467–3470CrossRefGoogle Scholar
  8. 8.
    Zangeneh-Nejad F, Fleury R (2018) Performing mathematical operations using high-index acoustic metamaterials. New Journal of Physics 20(7):073001CrossRefGoogle Scholar
  9. 9.
    Zangeneh-Nejad F, Fleury R (2019) Acoustic birefringence via non-eulerian metamaterials. J Appl Phys 126(3):034902CrossRefGoogle Scholar
  10. 10.
    Abdollahramezani S, Taghinejad H, Fan T, Kiarashinejad Y, Adibi A (2018) Reconfigurable multifunctional metasurfaces employing hybrid phase-change plasmonic architecture. arXiv:1809.08907
  11. 11.
    Hemmatyar O, Rahmani B, Bagheri A, Khavasi A (2017) Phase resonance tuning and multi-band absorption via graphene-covered compound metallic gratings. IEEE J Quantum Electron 53(5): 1–10CrossRefGoogle Scholar
  12. 12.
    Abdollahramezani S, Taghinejad H, Nejad YK, Eftekhar AA, Adibi A (2018) Dynamic dielectric metasurfaces incorporating phase-change material. In: CLEO: Science and Innovations. Optical Society of America, pp SF1J–1Google Scholar
  13. 13.
    Taghinejad M, Taghinejad H, Xu Z, Lee Kyu-Tae, Rodrigues SP, Yan J, Adibi A, Lian T, Cai W (2018) Ultrafast control of phase and polarization of light expedited by hot-electron transfer. Nano Letters 18(9):5544–5551CrossRefGoogle Scholar
  14. 14.
    Taghinejad M, Taghinejad H, Xu Z, Liu Y, Rodrigues SP, Lee Kyu-Tae, Lian T, Adibi A, Cai W (2018) Hot-electron-assisted femtosecond all-optical modulation in plasmonics. Advanced Materials 30 (9):1704915CrossRefGoogle Scholar
  15. 15.
    Hemmatyar O, Abdollahramezani S, Kiarashinejad Y, Zandehshahvar M, Adibi A (2019) Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach. Nanoscale 11 (44):21266–21274. CrossRefGoogle Scholar
  16. 16.
    Zangeneh-Nejad F (2019) Romain Fleury. Active times for acoustic metamaterials. Reviews in Physics, p 100031Google Scholar
  17. 17.
    Zangeneh-Nejad F, Fleury R (2019) Topological fano resonances. Phys Rev Lett 122(1):014301CrossRefGoogle Scholar
  18. 18.
    Hemmatyar O, Abbassi MA, Rahmani B, Memarian M, Mehrany K (2019) Wide-Band/Angle Blazed Dual Mode Metallic Groove Gratings. arXiv:1910.03091
  19. 19.
    Dorche AE, Abdollahramezani S, Chizari A, Khavasi A (2016) Broadband, polarization-insensitive, and wide-angle optical absorber based on fractal plasmonics. IEEE Photonics Technology Letters 28(22):2545–2548CrossRefGoogle Scholar
  20. 20.
    Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S (2014) Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 26(29):5031–5036CrossRefGoogle Scholar
  21. 21.
    Li Z, Yao K, Xia F, Shen S, Tian J, Liu Y (2015) Graphene plasmonic metasurfaces to steer infrared light. Sci Rep 5:12423CrossRefGoogle Scholar
  22. 22.
    Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339 (6125):1232009CrossRefGoogle Scholar
  23. 23.
    Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah Kok-Wai, Qiu Cheng-Wei et al (2013) Three-dimensional optical holography using a plasmonic metasurface. Nature Communications: 4Google Scholar
  24. 24.
    Arik K, Abdollahramezani S, Farajollahi S, Khavasi A, Rejaei B (2016) Design of mid-infrared ultra-wideband metallic absorber based on circuit theory. Opt Commun 381:309–313CrossRefGoogle Scholar
  25. 25.
    Yang Y, Kravchenko II, Briggs DP, Valentine J (2014) All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun: 5Google Scholar
  26. 26.
    Ye Feng Y, Zhu AY, Paniagua-Domínguez R, Fu YH, Luk’Yanchuk B, Kuznetsov AI (2015) High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser & Photonics Reviews 9(4):412–418CrossRefGoogle Scholar
  27. 27.
    Chizari A, Abdollahramezani S, Jamali MV, Salehi JA (2016) Analog optical computing based on a dielectric meta-reflect array. Opt Lett 41(15):3451–3454CrossRefGoogle Scholar
  28. 28.
    Rajabzadeh T, Mousavi MH, Abdollahramezani S, Jamali MV, Salehi JA (2017) Femtosecond CDMA using dielectric metasurfaces: Design procedure and challenges. arXiv:1712.00834
  29. 29.
    Guo T, Argyropoulos C (2016) Broadband polarizers based on graphene metasurfaces. Optics Letters 41 (23):5592–5595CrossRefGoogle Scholar
  30. 30.
    Abdollahramezani S, Chizari A, Dorche AE, Jamali MV, Salehi JA (2017) Dielectric metasurfaces solve differential and integro-differential equations. Opt Lett 42(7):1197–1200CrossRefGoogle Scholar
  31. 31.
    Hanson GW (2008) Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302CrossRefGoogle Scholar
  32. 32.
    Zangeneh-Nejad F, Khavasi A (2017) Spatial integration by a dielectric slab and its planar graphene-based counterpart. Opt Lett 42(10):1954–1957CrossRefGoogle Scholar
  33. 33.
    Argyropoulos C (2015) Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. Opt Express 23(18):23787–23797CrossRefGoogle Scholar
  34. 34.
    Yu Y, Kats MA, Genevet P, Yu N, Yi S, Kong J, Capasso F (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Letters 13(3):1257–1264CrossRefGoogle Scholar
  35. 35.
    Zangeneh-Nejad F, Safian R (2016) A graphene-based THz ring resonator for label-free sensing. IEEE Sensors J 16(11):4338–4344CrossRefGoogle Scholar
  36. 36.
    Tredicucci A, Vitiello MS (2014) Device concepts for graphene-based terahertz photonics. IEEE Journal of Selected Topics in Quantum Electronics 20(1):130–138CrossRefGoogle Scholar
  37. 37.
    Monticone F, Estakhri NM, Alu A (2013) Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 110(20):203903CrossRefGoogle Scholar
  38. 38.
    AbdollahRamezani S, Arik K, Khavasi A, Kavehvash Z (2015) Analog computing using graphene-based metalines. Opt Lett 40(22):5239–5242CrossRefGoogle Scholar
  39. 39.
    Huang W, Wang J, Du J, Deng Y, He Y (2019) Contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of moo 3-x nanodots and 3, 3-diaminobenzidine. Microchim Acta 186(2):79CrossRefGoogle Scholar
  40. 40.
    Li M, Huang X, Yu H (2019) A colorimetric assay for ultrasensitive detection of copper (ii) ions based on ph-dependent formation of heavily doped molybdenum oxide nanosheets. Mater Sci Eng C 101:614–618CrossRefGoogle Scholar
  41. 41.
    Wang J, Yang Y, Li H, Gao J, He P, Bian L, Dong F, He Y (2019) Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced raman analysis. Chemical ScienceGoogle Scholar
  42. 42.
    Li R, Wang J, He Y, Dong F, Bian L, Li B (2019) Mechanochemical synthesis of defective molybdenum trioxide, titanium dioxide, and zinc oxide at room temperature. ACS Sustainable Chemistry & EngineeringGoogle Scholar
  43. 43.
    Kiarashinejad Y, Abdollahramezani S, Adibi A (2019) Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. arXiv:1902.03865
  44. 44.
    Kiarashinejad Y, Abdollahramezani S, Zandehshahvar M, Hemmatyar O, Adibi A (2019) Deep learning reveals underlying physics of light-matter interactions in nanophotonic devices. Advanced Theory and Simulations: 7Google Scholar
  45. 45.
    Kiarashinejad Y, Abdollahramezani S, Fan T, Adibi A (2019) Mitigating inverse design complexity of nano-antennas using a novel dimensionality reduction approach (conference presentation). In: Photonic and phononic properties of engineered nanostructures IX. International Society for Optics and Photonics, vol 10927Google Scholar
  46. 46.
    Kiarashinejad Y, Abdollahramezani S, Zandehshahvar M, Hemmatyar O, Adibi A (2019) Nanophotonics design platform based on double-step dimensionality reduction. In: Frontiers in optics. Optical Society of America, pp JTu3A–4Google Scholar
  47. 47.
    Zandehshahvar M, Hemmatyar O, Kiarashinejad Y, Abdollahramezani S, Adibi A (2019) Dimensionality reduction based method for design and optimization of optical nanostructures using neural network. In: Frontiers in optics. Optical Society of America, pp FM5C–2Google Scholar
  48. 48.
    Hemmatyar O, Abdollahramezani S, Kiarashinejad Y, Zandehshahvar M, Adibi A (2019) Structural colors by fano-resonances supported in all-dielectric metasurfaces made of hfo2. In: Frontiers in optics. Optical Society of America, pp FM5C–4Google Scholar
  49. 49.
    Kiarashinejad Y, Zandehshahvar M, Abdollahramezani S, Hemmatyar O, Pourabolghasem R, Adibi A (2019) Knowledge discovery in nanophotonics using geometric deep learning. arXiv:1909.07330 1909.07330

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringSharif University of TechnologyTehranIran
  2. 2.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations