Advertisement

Plasmonics

pp 1–13 | Cite as

Design of Aluminum Bowtie Nanoantenna Array with Geometrical Control to Tune LSPR from UV to Near-IR for Optical Sensing

  • Bin Wang
  • Subhash C. SinghEmail author
  • Huanyu Lu
  • Chunlei GuoEmail author
Article
  • 37 Downloads

Abstract

Plasmonic nanoantennas have earned strong recognition for their unique capability to confine light from free space into sub-wavelength dimensions with strong electric field (E-field) enhancement factor due to localized surface plasmon resonance (LSPR). Broad spectral tuning of LSPR from ultraviolet (UV) to near-infrared (NIR) is required for incident light wavelength and material sensitive plasmonic applications in different spectral regions. In this article, we introduced and designed a novel aluminum plasmonic platform consisting of a bowtie nanoantenna (BNA) array with metal-insulator-metal (MIM) configuration where LSPR peak position was broadband tunable from UV to NIR through geometric control of antenna parameters. Furthermore, we designed and numerically analyzed a plasmonic biosensor platform that detected concentration of glycerol in de-ionized (DI) water with a concentration in the range of 0 to 40 wt% (refractive index = 1.333 to 1.368) with a sensitivity of 497 nm/RIU (refractive index units). The designed plasmonic platform can also be used as a surface-enhanced Raman scatting (SERS) substrate with enhancement factor as high as 4.82 × 109 for 1042 nm excitation wavelength. The reported hybrid dielectric-metallic plasmonic nanostructured system is a universal plasmonic platform for a wide range of applications including single-molecule SERS, biosensing, fluorescence microscopy, plasmonic nanocavity, nanolasers, and solid-state lighting.

Keywords

Aluminum plasmonics Bowtie nanoantenna Localized surface plasmon resonance Tunability SERS Plasmonic sensor 

Notes

Funding Information

Scientific Research Project of the Chinese Academy of Sciences (QYZDB-SSW-SYS038); National Natural Science Foundation of China (11774340); and the Open Fund of the State Key Laboratory on Integrated Optoelectronics (No. 2015IOSKL).

Supplementary material

11468_2019_1071_MOESM1_ESM.docx (439 kb)
ESM 1 (DOCX 439 kb)

References

  1. 1.
    Novotny L, Van Hulst N (2011) Antennas for light. Nat Photonics 5(2):83–90CrossRefGoogle Scholar
  2. 2.
    Sundaramurthy A, Crozier KB, Kino GS et al (2005) Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phys Rev B 72(16):162409CrossRefGoogle Scholar
  3. 3.
    Merlein J, Kahl M, Zuschlag A et al (2008) Nanomechanical control of an optical antenna. Nat Photonics 2(4):230–233CrossRefGoogle Scholar
  4. 4.
    Casadei A, Pecora EF, Trevino J, Forestiere C, Rüffer D, Russo-Averchi E, Matteini F, Tutuncuoglu G, Heiss M, Fontcuberta i Morral A, Dal Negro L (2014) Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas. Nano Lett 14(5):2271–2278PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Abb M, Wang Y, Papasimakis N, de Groot CH, Muskens OL (2014) Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett 14(1):346–352PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Li L, Shuang FL, Puretzky AA et al (2012) Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna. Appl Phys Lett 101(11):113116PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI (2012) Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 20(12):13311–13319PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lyamkina AA, Schraml K, Regler A et al (2016) Monolithically integrated single quantum dots coupled to bowtie nanoantennas. Opt Express 24(25):28936–28944PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Zeng C, Hu XG, Shi MJ et al (2016) Enhancing light emission from germanium quantum dots by bowtie antennas. J Lightwave Technol 34(14):3283–3287CrossRefGoogle Scholar
  10. 10.
    Wang W, Zhang J, Che X et al (2016) Large absorption enhancement in ultrathin solar cells patterned by metallic nanocavity arrays. Sci Rep 6:34219PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lin L, Zheng Y (2015) Optimizing plasmonic nanoantennas via coordinated multiple coupling. Sci Rep 5:14788PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wuytens PC, Skirtach AG, Baets R (2017) On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides. Opt Express 25(11):12926–12934PubMedCrossRefGoogle Scholar
  13. 13.
    Ding SY, Yi J, Li JF et al (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1(6):16021CrossRefGoogle Scholar
  14. 14.
    Li WD, Ding F, Hu J et al (2011) Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt Express 19(5):3925–3936PubMedCrossRefGoogle Scholar
  15. 15.
    Hatab NA, Hsueh CH, Gaddis AL, Retterer ST, Li JH, Eres G, Zhang Z, Gu B (2010) Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett 10(12):4952–4955PubMedCrossRefGoogle Scholar
  16. 16.
    Zhao C, Liu Y, Yang J, Zhang J (2014) Single-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna. Nanoscale 6(15):9103–9109PubMedCrossRefGoogle Scholar
  17. 17.
    Kinkhabwala A, Yu Z, Fan S et al (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3(11):654–657CrossRefGoogle Scholar
  18. 18.
    Lu G, Liu J, Zhang T, Shen H, Perriat P, Martini M, Tillement O, Gu Y, He Y, Wang Y, Gong Q (2013) Enhancing molecule fluorescence with asymmetrical plasmonic antennas. Nanoscale 5(14):6545–6551PubMedCrossRefGoogle Scholar
  19. 19.
    McPhillips J, Murphy A, Jonsson MP, Hendren WR, Atkinson R, Höök F, Zayats AV, Pollard RJ (2010) High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 4(4):2210–2216PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Spackova B, Wrobel P, Bockova M et al (2016) Optical biosensors based on plasmonic nanostructures: a review. Proc IEEE 104(12):2380–2408CrossRefGoogle Scholar
  21. 21.
    Zhang C, Lu Y, Ni Y et al (2015) Plasmonic lasing of nanocavity embedding in metallic nanoantenna array. Nano Lett 15(2):1382–1387PubMedCrossRefGoogle Scholar
  22. 22.
    Luo Y, Ahmadi ED, Shayan K et al (2017) Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nat Commun 8(1):1413PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Roxworthy BJ, Ko KD, Kumar A, Fung KH, Chow EK, Liu GL, Fang NX, Toussaint KC Jr (2012) Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett 12(2):796–801PubMedCrossRefGoogle Scholar
  24. 24.
    Nie KY, Li J, Chen X, Xu Y, Tu X, Ren FF, du Q, Fu L, Kang L, Tang K, Gu S, Zhang R, Wu P, Zheng Y, Tan HH, Jagadish C, Ye J (2017) Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas. Sci Rep 7(1):7503PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lee B, Park J, Han GH, Ee HS, Naylor CH, Liu W, Johnson AT, Agarwal R (2015) Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett 15(5):3646–3653PubMedCrossRefGoogle Scholar
  26. 26.
    Gadalla MN, Abdel-Rahman M, Shamim A (2014) Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci Rep 4:4270PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Weber D, Pablo A, Pablo AG et al (2011) Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes. Opt Express 19(16):15047–15061PubMedCrossRefGoogle Scholar
  28. 28.
    Linnenbank H, Grynko Y, Förstner J et al (2016) Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Light: Sci Applic 5(1):e16013–e16013CrossRefGoogle Scholar
  29. 29.
    Fischer H, Martin OJ (2008) Engineering the optical response of plasmonic nanoantennas. Opt Express 16(12):9144–9154PubMedCrossRefGoogle Scholar
  30. 30.
    Savaliya PB, Thomas A, Dua R, Dhawan A (2017) Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials. Opt Express 25(20):23755–23772PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Guo HC, Meyrath TP, Zentgraf T, Liu N, Fu L, Schweizer H, Giessen H (2008) Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt Express 16(11):7756–7766PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Mcfarland AD, Duyne RPV (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057–1062CrossRefGoogle Scholar
  33. 33.
    Shafer-Peltier KE, Haynes CL, Glucksberg MR, van Duyne R (2003) Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 125(2):588–593PubMedCrossRefGoogle Scholar
  34. 34.
    Reed JC, Zhu H, Zhu AY, Li C, Cubukcu E (2012) Graphene-enabled silver nanoantenna sensors. Nano Lett 12(8):4090–4094PubMedCrossRefGoogle Scholar
  35. 35.
    Naik GV (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24):3264–3294PubMedCrossRefGoogle Scholar
  36. 36.
    Chowdhury MH, Krishanu R, Gray SK et al (2009) Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules. Anal Chem 81(4):1397–1403PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sigle DO, Perkins E, Baumberg JJ, Mahajan S (2013) Reproducible deep-UV SERRS on aluminum nanovoids. J Phys Chem Lett 4(9):1449–1452PubMedCrossRefGoogle Scholar
  38. 38.
    Langhammer C, Schwind M, Kasemo B et al (2006) Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 6(5):1461–1471CrossRefGoogle Scholar
  39. 39.
    Mazzotta F, Wang G, Hägglund C et al (2011) Nanoplasmonic biosensing with on-chip electrical detection. Biosens Bioelectron 26(4):1131–1136CrossRefGoogle Scholar
  40. 40.
    Li Z, Hattori HT, Lan F et al (2011) Merging photonic wire lasers and nanoantennas. J Lightwave Technol 29(18):2690–2697CrossRefGoogle Scholar
  41. 41.
    Liu Z, Boltasseva A, Pedersen RH et al (2008) Plasmonic nanoantenna arrays for the visible. Metamaterials 2(1):45–51CrossRefGoogle Scholar
  42. 42.
    Koenderink AF (2017) Single-photon nanoantennas. ACS Photonics 4(4):710–722PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Rosen DA, Tao AR (2014) Modeling the optical properties of bowtie antenna generated by self-assembled Ag triangular nanoprisms. ACS Appl Mater Interfaces 6(6):4134–4142PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Cao T, Wei CW, Simpson RE et al (2014) Broadband polarization-independent perfect absorber using a phasechange metamaterial at visible frequencies. Sci Rep 4:3955PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zijlstra P, Paulo PMR, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 7(6):379–382PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lee EK, Song JK, Jeong KY (2013) Design of plasmonic nano-antenna for total internal reflection fluorescence microscopy. Opt Express 21(20):23036PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Baptiste A, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101(14):143902CrossRefGoogle Scholar
  48. 48.
    Vecchi G, Giannini V, Rivas JG (2009) Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys Rev Lett 102(14):146807PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Nordlander P, Prodan E (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett 4(11):2209–2213CrossRefGoogle Scholar
  50. 50.
    Ding W, Bachelot R, Kostcheev S et al (2010) Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles. J Appl Phys 108(12):124314CrossRefGoogle Scholar
  51. 51.
    Ding W, Bachelot R, Lamaestre RED et al (2009) Understanding near/far-field engineering of optical dimer antennas through geometry modification. Opt Express 17:21228–21239PubMedCrossRefGoogle Scholar
  52. 52.
    Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98(26):266802PubMedCrossRefGoogle Scholar
  53. 53.
    Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403(1):27–54PubMedCrossRefGoogle Scholar
  54. 54.
    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241CrossRefGoogle Scholar
  55. 55.
    Yampolsky S, Fishman DA, Dey S et al (2014) Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nat Photonics 8(8):650–656CrossRefGoogle Scholar
  56. 56.
    Gupta N, Dhawan A (2018) Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response. Opt Express 26(14):17899–17915PubMedCrossRefGoogle Scholar
  57. 57.
    Jha SK, Ahmed Z, Agio M, Ekinci Y, Löffler JF (2012) Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J Am Chem Soc 134(4):1966–1969PubMedCrossRefGoogle Scholar
  58. 58.
    Ding SY, Yi J, Li J et al (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1:16021–16036CrossRefGoogle Scholar
  59. 59.
    Zhang J, Irannejad M, Cui B (2014) Bowtie nanoantenna with single-digit nanometer gap for surface-enhanced Raman scattering (SERS). Plasmonics 10(4):831–837CrossRefGoogle Scholar
  60. 60.
    Kaniber M (2016) Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method. Sci Rep 6:23203PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Singh SC, Zeng HB, Guo C et al (2012) Lasers: fundamentals, types, and operations. In: Nanomaterials: processing and characterization with lasers, 1rd edn. Wiley, New York, pp 1–34CrossRefGoogle Scholar
  62. 62.
    Sreekanth KV, Alapan Y, ElKabbash M, Ilker E, Hinczewski M, Gurkan UA, de Luca A, Strangi G (2016) Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat Mater 15(6):621–627PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo FJ, Pruneri V, Altug H (2015) Mid-infrared plasmonic biosensing with graphene. Science 349(6244):165–168PubMedCrossRefGoogle Scholar
  64. 64.
    Singh SC, Zeng HB, Guo C et al (2012) Introduction of materials and architectures at the nanoscale. In: Nanomaterials: processing and characterization with lasers, 2rd edn. Wiley, New York, pp 35–65CrossRefGoogle Scholar
  65. 65.
    Hill RT (2015) Plasmonic biosensors. Wires Nanomed Nanobiotechnol 7(2):152–168CrossRefGoogle Scholar
  66. 66.
    Etezadi D, Warner Iv JB, Ruggeri FS et al (2017) Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light: Sci Applic 6(8):e17029CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations