Advertisement

Plasmonics

pp 1–9 | Cite as

Investigation and Performance Studies of Optical Properties of Nanocomposite Spiral-Shaped Photonic Crystal Fiber (S-PCF)

  • M. ShanthiEmail author
  • R. Seyezhai
Original Article
  • 27 Downloads

Abstract

In this paper, novel spiral-shaped photonic crystal fiber (S-PCF) is proposed in the near-infrared regime up to 2600 nm of operating wavelength. With that features, silica (SiO2) background of S-PCF is doped with gold (Au) and silver (Ag) nanoparticle and the elliptical core region is formed by comprising silicon rod. This nanocomposited S-PCF is then optimized well for spiral arm whose radius at each layer is varied from 1000 to 350 nm and the radius of core region is fixed as 600 nm. Using finite element method (FEM), different optical properties such as effective index, birefringence, dispersion, effective area, nonlinearity, and power fraction ratio are numerically investigated for different cases of PCF such as undoped silica substrate, Ag-doped silica substrate, and Au-doped silica substrate. The simulation results are obtained and inferred that the nanoparticle-doped PCF is promising for the better performance in the near-infrared region than the case of undoped S-PCF.

Keywords

Spiral PCF Nano metal particles Silicon Near-infrared Optical properties 

Notes

References

  1. 1.
    Russell PSJ (2003) Photonic crystal fibers. Science 299:358–362PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Kudlinski A, George AK, Knight JC, Travers JC, Rulkov AB, Popov SV, Taylor JR (2006) Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Opt Express vol. 14:5715–5722CrossRefGoogle Scholar
  3. 3.
    Reeves WH, Knight JC, Russell PSJ, Roberts PJ (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt Express 10:609–613PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Matsui T, Zhou J, Nakajima K, Sankawa I (2005) Dispersion-flattened photonic crystal fiber with the large effective area and low confinement loss, IEEE. J Lightwave Technol 23:4178–4183CrossRefGoogle Scholar
  5. 5.
    Liao J, Huang T (2015) Highly nonlinear photonic crystal fiber with ultrahigh birefringence using a nano-scale slot core. Opt Fiber Technol 22:107–112CrossRefGoogle Scholar
  6. 6.
    Hansen KP (2005) Introduction to nonlinear photonic crystal fibers. J Opt Fiber Commun Rep 2:226–254CrossRefGoogle Scholar
  7. 7.
    Zhao C-L, Li Z, Yang X, Lu C, Jin W, Demokan MS (2005) Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier. IEEE Photon Technol Lett 17:561–563CrossRefGoogle Scholar
  8. 8.
    Shephard JD, Couny F, Russell PS, Jones JD, Knight JC, Hand DP (2005) Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications. Appl Opt 21:4582–4590CrossRefGoogle Scholar
  9. 9.
    AbdelMalek F, Li H, Schülzgen A, Moloney JV, Peyghambarian N, Member, IEEE, Ademgil H, Haxha S, Senior Member, IEEE (2009) A nonlinear switch based on irregular structures and nonuniformity in doped photonic crystal fibers. IEEE J Quantum Electron vol. 45:684–693CrossRefGoogle Scholar
  10. 10.
    Yang X, Lu Y, Liu B, Yao J (2017) Design of a tunable single-polarization photonic crystal fiber filter with silver-coated and liquid-filled air holes. IEEE Photonics 9:1–9Google Scholar
  11. 11.
    Murray RT, Kelleher EJR, Popov SV, Mussot A, Kudlinski A, Taylor JR (2013) Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion. Opt Express 21:15826–15833PubMedCrossRefGoogle Scholar
  12. 12.
    Adachi M, Yamane K, Morita R, Yamashita M (2005) Sub-5-fs pulse compression of laser output using photonic crystal fiber with short zero-dispersion wavelength. Jpn J Appl Phys 44:L 1423–L 1425CrossRefGoogle Scholar
  13. 13.
    Ahmed K, Morshed M (2017) Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sens Bio-Sens Res 7:1–6Google Scholar
  14. 14.
    Han J, Liu E, Liu J (2019) Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss. J Opt Soc Am A 36:533–539CrossRefGoogle Scholar
  15. 15.
    Sultana J, Islam S, Faisal M, Islam MR, Ng BW-H, Ebendorff-Heidepriem H, Abbott D (2018) Highly birefringent elliptical core photonic crystal fiber for terahertz application. Opt Commun 407:92–96CrossRefGoogle Scholar
  16. 16.
    Lidiya AE, VasanthaJayakantha Raja R, Ngo QM, Vigneswaran D (2019) Detecting hemoglobin content blood glucose using surface plasmon resonance in D-shaped photonic crystal fiber. Opt Fiber Technol 50:132–138CrossRefGoogle Scholar
  17. 17.
    Ahmed K, Ahmed F, Roy S, Paul BK, NargisAktar DV, Islam S (2019) Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens vol.no, 19:3368–3375CrossRefGoogle Scholar
  18. 18.
    Lu J, Li Y, Han Y, Liu Y, Gao J (2018) D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Appl Opt 57:5268–5272PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Nagarajan N, Yamunadevi R, Vasantha Jayakantha Raja R, Raj GJ (2018) Ultrasensitive nonlinear fiber optics-based refractive index sensor using degenerate four-wave mixing technique in photonic crystal fiber. IEEE Sens 18:6607–6614CrossRefGoogle Scholar
  20. 20.
    Kruhlak RJ, Wong GKL, Chen JSY, Murdoch SG, Leonhardt R, Harvey JD, Joly NY, Knight JC (2006) Polarization modulation instability in photonic crystal fibers. Opt Lett 31:1379–1381PubMedCrossRefGoogle Scholar
  21. 21.
    Limpert J, Deguil-Robin N, Manek-Hönninger I, Salin F, Röser F, Liem A, Schreiber T, Nolte S, Zellmer H, Tünnermann A, Broeng J, Petersson A, Jakobsen C (2005) High-power rod-type photonic crystal fiber laser. Opt Express 13:1055–1058PubMedCrossRefGoogle Scholar
  22. 22.
    Chen L, Liao D-g, Guo X-g, Zhao J-y, Zhu Y-m, Zhuang S-l (2019) Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review. Front Inform Technol Electron Eng vol.20:591–607CrossRefGoogle Scholar
  23. 23.
    Mafi A, Moloney JV, Kouznetsov D, Schulzgen A, Jiang S, Luo T, Peyghambarian N (2004) A large-core compact high-power single-mode photonic crystal fiber laser. IEEE Photon Technol Lett 16:2595–2597CrossRefGoogle Scholar
  24. 24.
    Chu Y, Yu Y, Hu X, Chen Z, Ma Y, Liu Y, Wang Y, Liao L, Xing Y, Li H, JinggagnPeng ND, Li J, Yang L (2017) Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology. Opt Express 25:24061–24067PubMedCrossRefGoogle Scholar
  25. 25.
    Sun T, Kai G, Wang Z, Yuan S, Dong X (2008) Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region. Chin Opt Lett 6:93–95CrossRefGoogle Scholar
  26. 26.
    Zhang W, Wu J, Zhou G, Xia C, Liu J, Tian H, Liang W, Hou Z (2016) Yb-doped silica glass and photonic crystal fiber based on laser sintering technology. Laser Phys 26 (035801): 1-5Google Scholar
  27. 27.
    Datta S, Mitra SS, Chakravorty D, Ram S, Bahadur D (1986) J Mater Sci Lett 5:89CrossRefGoogle Scholar
  28. 28.
    Roy RA, Roy R (1984) Mater. Res. Bull. 19 169 Sinfelt J H 1977. Science 195:641Google Scholar
  29. 29.
    Anderson A (1980) Hunderi 0 and Granqvist C G. J Appl Phys 57:757Google Scholar
  30. 30.
    Garnett JCM (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc Lond A 203:385–420CrossRefGoogle Scholar
  31. 31.
    Koledintseva MY, DuBroff RE, Schwartz RW (2006) A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies. Progress In Electromagnetics Research, Pier 63:223–242CrossRefGoogle Scholar
  32. 32.
    Moiseev SG (2009) Optical Properties Of A Maxwell–Garnett composite medium with nonspherical silver inclusions. Russ Phys J vol.52(11): 1121–1127Google Scholar
  33. 33.
    Chattopadhyay R, Bhadra SK (2013) Dispersion tailoring in single mode optical fiber by doping silver nanoparticle. Appl Phys B Lasers Opt Volume 111:399–406CrossRefGoogle Scholar
  34. 34.
    Ruan Y, Simpson DA, Jeske J, Ebendorff-Heidepriem H, Lau DWM, Ji H, Johnson BC, Ohshima T, Shahraam Afshar V, Hollenberg L, Greentree AD, Monro TM, Gibson BC (2018) Magnetically sensitive nanodiamond-doped tellurite glass fibers. Sci Rep 8:1268 : 1-6Google Scholar
  35. 35.
    Bose S, Chattopadhyay R, Roy S, Bhadra SK (2016) Study Of nonlinear dynamics in silver nanoparticle-doped photonic crystal fiber. J Opt Soc Am B Vol. 33:1014–1021CrossRefGoogle Scholar
  36. 36.
    Bose S, Sahoo A, Chattopadhyay R, Roy S, Bhadra SK, Agrawal GP (2016) Implications of a zero-nonlinearity wavelength in photonic crystal fibers doped with silver nanoparticles. Phys Rev A 94:043835CrossRefGoogle Scholar
  37. 37.
    Nallusamy N, Zu P, Raja RVJ, Arzate N, Vigneswaran D (2019) Degenerate four-wave mixing for measurement of magnetic field using a nanoparticles-doped highly nonlinear photonic crystal fiber. Appl Opt 58:333–339PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lidiya AE, Raja RVJ, Ngo QM, Vigneswaran D (2019) Detecting hemoglobin content blood glucose using surface plasmon resonance in D-shaped photonic crystal fiber. Opt Fiber Technol Vol.50:132–138CrossRefGoogle Scholar
  39. 39.
    Ballato J, Hawkins T, Foy P, Stolen R, Kokuoz B, Ellison M, McMillen C, Reppert J, Rao AM, Daw M, Sharma S, Shori R, Stafsudd O, Rice RR, Powers DR (2008) Silicon optical fiber. Opt Express 16:18675–18683PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Mashanovich GZ, Milošević MM, Nedeljkovic M, Owens N, Xiong B, Teo EJ, Hu Y (2011) Low loss silicon waveguides for the mid-infrared. Opt Express 19:7112–7119PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Bigot L, El Hamzaoui H, Le Rouge A, Bouwmans G, Chassagneux F, Capoen B, Bouazaoui M (2011) Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber. Opt Express 19:19061–19066PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ayyanar N, Raja GT, Sharma M, Kumar DS (2018) Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sensors J 18:7093–7099CrossRefGoogle Scholar
  43. 43.
    Salzberg CD, Villa JJ (1957) Infrared Refractive Indexes of Silicon, Germanium and modified selenium glass. J Opt Soc Am 47:244–246CrossRefGoogle Scholar
  44. 44.
    Sharma AK, Gupta BD (2007) On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J Appl Phys 101:093111CrossRefGoogle Scholar
  45. 45.
    Xu Q, Miao R, Zhang Y (2012) Highly nonlinear low-dispersion photonic crystal fiber with high birefringence for four-wave mixing. Opt Mater 35:217–221CrossRefGoogle Scholar
  46. 46.
    Lin Q, Painter OJ, Govind P et al (2007) Opt Express 15:16604–16644PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Thavasi Raja G, Halder R, Varshney SK (2015) Numerical analysis of lasing characteristics in highly bend-compensated large-mode-area ytterbium-doped double-clad leakage channel fibers. Appl Opt 54:10314–10320PubMedCrossRefGoogle Scholar
  48. 48.
    Wang CGJ (2012) Member, IEEE, Elliptical–spiral photonic crystal fibers with wideband high birefringence, large nonlinearity, and low dispersion. IEEE Photonics 4:2151–2158Google Scholar
  49. 49.
    Islam MA, Alam MS (2012) Senior Member, IEEE, Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence. IEEE J Lightwav Technol 30:3545–3551CrossRefGoogle Scholar
  50. 50.
    Huang T, Liao J, Fu S, Tang M, Shum P, Liu D (2015) Slot spiral silicon photonic crystal fiber with property of both high birefringence and high nonlinearity. IEEE Photonics 6:2200802–2200807Google Scholar
  51. 51.
    Bala A, Chowdhury KR, Mia MB, Faisal M (2017) Highly birefringent, highly negative dispersion compensating photonic crystal fiber. Appl Opt 56:7256–7261PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang X, He M, Chang M, Chen H, Chen N, Qi N, Yuan M, Qin X (2018) Dual-cladding high-birefringence and high-nonlinearity photonic crystal fiber with As2S3 core. Opt Commun 410:396–402CrossRefGoogle Scholar
  53. 53.
    Paula BK, Ahmed K, Rahman SAMM, Shanthi M, Vigneswaran D, Zakaria R (2019) Numerical analysis of a highly nonlinear microstructured optical fiber with air-holes arranged in spirals. Opt Fiber Technol 51:90–95CrossRefGoogle Scholar
  54. 54.
    Chen J, Nie H, Zha T, Mao P, Tang C, Shen X, Park G-s (2018) Optical magnetic field enhancement by strong coupling in metamaterials. J Lightwave Technol 36:2791–2795CrossRefGoogle Scholar
  55. 55.
    Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D, Yu Y (2017) Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt Express 25:3675–3681PubMedCrossRefGoogle Scholar
  56. 56.
    Chen J, Fan W, Mao P, Tang C, Liu Y, Yu Y, Zhang L (2017) Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing. Plasmonics 12:529–534CrossRefGoogle Scholar
  57. 57.
    Chen J, Zha T, Zhang T, Tang C, Yu Y, Liu Y, Zhang L (2017) Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials. J Lightwave Technol 35:71–74CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringUniversity College of Engineering, RamanathapuramRamanathapuramIndia
  2. 2.Department of Electrical and Electronics EngineeringSSN College of EngineeringChennaiIndia

Personalised recommendations