Skip to main content
Log in

Complex-conjugate Pole-residue Pair-Based FDTD Method for Assessing Ultrafast Transient Plasmonic Near Field

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The study of the optical properties of plasmonic nanostructures in the stationary regime has greatly benefited from the development of numerical methods, among which Finite Difference Time Domain (FDTD) is popular. In contrast, the use of these numerical tools for assessing the transient plasmonic optical response triggered by ultrashort laser pulses is hampered by the difficulty to address small variations of the material optical properties with reasonable computational time. Yet, many of the developments based on this ultrashort response rely on the dynamics of the near-field topography around the nanostructures. In this article, we present a way to bridge this gap with the complex-conjugate pole-residue pair (CCPRP) approach. A CCPRP-based FDTD simulator has been developed. First, a simple methodology to check the end-to-end accuracy of the FDTD simulation is provided. Then, in conjunction with a three-temperature model, the approach enables us to calculate the ultrafast transient near field inside and around a gold nanoparticle (AuNP) upon absorption of a subpicosecond laser pulse. The transient variation of the field intensity inside and around the AuNP is compared with the one determined by the Mie theory. The dependence of the transient field intensity on the distance away from the nanoparticle surface and on the delay time after laser pulse absorption is finally analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Atanasov PA, Nedyalkov NN, Sakai T, Obara M (2007) Localization of the electromagnetic field in the vicinity of gold nanoparticles Surface modification of different substrates. Appl Surf Sci 254:794–798

    Article  CAS  Google Scholar 

  2. Tian M, Zhao L, Yang Z, Chen H, Sun L, Wang J, Yan C (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano letters 9:3896–3903

    Article  Google Scholar 

  3. Tovmachenko OG, Graf C, van den Heuvel DJ, van Blaaderen A, Gerritsen HC (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Advanced Materials 18:91–95

    Article  CAS  Google Scholar 

  4. Jian-Feng L, Li C-Y, Aroca RF (2017) Plasmon-enhanced fluorescence spectroscopy. Chem Soc Rev 46:3962–3979

    Article  Google Scholar 

  5. Nikoobakht B, Wang J, El-Sayed MA (2002) Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chem Phys Lett 366:17–23

    Article  CAS  Google Scholar 

  6. Wang X, Guillet Y, Selvakannan PR, Remita H, Palpant B (2015) Broadband spectral signature of the ultrafast transient optical response of gold nanorods. J Phys Chem C 119:7416–7427

    Article  CAS  Google Scholar 

  7. Douillard L, Charra F, Fiorini C, Adam PM, Bachelot R, Kostcheev S, Lerondel G, de la Chapelle ML, Royer P (2007) Optical properties of metal nanoparticles as probed by photoemission electron microscopy. J Appl Phys, 101(8)

  8. Lang P, Song X, Ji B, Tao H, Dou Y, Gao X, Hao Z, Lin J (2019) Spatial-and energy-resolved photoemission electron from plasmonic nanoparticles in multiphoton regime. Opt Express 27(5):6878–6891

    Article  CAS  Google Scholar 

  9. Haug T, Klemm P, Bange S, Lupton JM (2015) Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films. Phys Rev Lett 115(6):1–5

    Article  Google Scholar 

  10. Labouret T, Palpant B (2016) Nonthermal model for ultrafast laser-induced plasma generation around a plasmonic nanorod. Phys Rev B 94(24):1–9

    Article  Google Scholar 

  11. Boulais É, Lachaine R, Meunier M (2012) Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation. Nano Lett 12(9):4763–4769

    Article  CAS  Google Scholar 

  12. Labouret T, Audibert JF, Pansu RB, Palpant B (2015) Plasmon-assisted production of reactive oxygen species by single gold nanorods. Small 11(35):4475–4479

    Article  CAS  Google Scholar 

  13. Guillet Y, Charron E, Palpant B (2009) Spectral dependence of the ultrafast optical response of nonspherical gold nanoparticles. Phys Rev B 79:1–5

    Google Scholar 

  14. Di Mario L, Otomalo TO, Catone D, O’Keeffe P, Tian L, Turchini S, Palpant B, Martelli F (2018) Time-dependent optical response of three-dimensional Au nanoparticle arrays formed on silica nanowires. Phys Rev B 97(11):1–9

    Article  Google Scholar 

  15. Palpant B (2017) Photothermal properties of gold nanoparticles. In: Gold nanoparticles for physics, biology and chemistry. World Scientific, pp 87–130

  16. Hensen M, Huber B, Friedrich D, Krauss E, Pres S, Grimm P, Fersch D, Lüttig J, Lisinetskii V, Hecht B, Brixner T (2019) Spatial variations in femtosecond field dynamics within a plasmonic nanoresonator mode. Nano Lett 19(7):4651–4658

    Article  CAS  Google Scholar 

  17. Koya AN, Ji B, Hao Z, Lin J (2017) Coherent control of gap plasmons of a complex nanosystem by shaping driving femtosecond pulses. Plasmonics 12(6):1693–1699

    Article  CAS  Google Scholar 

  18. Hao F, Nordlander P (2007) Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem Phys Lett 446:115–118

    Article  CAS  Google Scholar 

  19. Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Article  CAS  Google Scholar 

  20. Vial A, Laroche T (2008) Comparison of gold and silver dispersion laws suitable for FDTD simulations. Appl Phys B Lasers Opt 93:139–143

    Article  CAS  Google Scholar 

  21. Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG (2010) Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput Phys Commun 181 (3):687–702

    Article  CAS  Google Scholar 

  22. Deinega A, John S (2012) Effective optical response of silicon to sunlight in the finite-difference time-domain method. Opt Lett 37:112

    Article  CAS  Google Scholar 

  23. Sehmi HS, Langbein W, Muljarov EA (2017) Optimizing the Drude-Lorentz model for material permittivity method, program, and examples for gold, silver, and copper. Phys Rev B 95(11):1–8

    Article  Google Scholar 

  24. Han M, Dutton RW, Fan S (2006) Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs. Microw Wirel Components Lett 16(3):119–121

    Article  Google Scholar 

  25. Han L, Zhou D, Li K, Li X, Huang WP (2012) A rational-fraction dispersion model for efficient simulation of dispersive material in FDTD method. J Light Technol 30:2216–2225

    Article  CAS  Google Scholar 

  26. Han L (2012) Simulation of optical devices and circuits using time domain methods. Ph.D thesis, 1–173

  27. Deschrijver D, Mrozowski M, Dhaene T, De Zutter D (2008) Macromodeling of multiport systems using a fast implementation of the vector fitting method. IEEE Microw Wirel Components Lett 18(6):383–385

    Article  Google Scholar 

  28. Lin H, Pantoja MF, Angulo LD, Alvarez J, Martin RG, Garcia SG (2012) FDTD modeling of graphene devices using complex conjugate dispersion material model. IEEE Microw Wirel Components Lett 22 (12):612–614

    Article  Google Scholar 

  29. Richards E (2014) Applications of vector fitting in the solution of electromagnetic field interactions. Master thesis, 108

  30. Gustavsen B (2006) Improving the pole relocating properties of vector fitting. IEEE Trans Power Deliv 21 (3):1587–1592

    Article  Google Scholar 

  31. Gustavsen B, Semlyen A (1999) Rational approximation of frequency domain responses by vector fitting. IEEE Trans Power Deliv 14(3):1052–1061

    Article  Google Scholar 

  32. Alsunaidi MA, Al-Jabr AA (2009) A general ADE-FDTD algorithm for the simulation of dispersive structures. IEEE Photonics Technol Lett 21:817–819

    Article  Google Scholar 

  33. Palik ED (1998) Handbook of optical constants of solids. Academic Press

  34. Berenger J-P (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200

    Article  Google Scholar 

  35. Berenger J-P (1996) Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 127(2):363–379

    Article  Google Scholar 

  36. Taflove A, Hagness SC (2005) Computational electrodynamics: the FDTD Method. Artech House, Boston

  37. Wang X (2013) Ph.D Thesis. University Pierre et Marie Curie, Paris

  38. Imura K, Nagahara T, Okamoto H (2004) Characteristic near-field spectra of single gold nanoparticles. Chem Phys Lett 400(4–6):500–505

    Article  CAS  Google Scholar 

  39. Stoll T, Maioli P, Crut A, Del Fatti N, Vallée F (2014) Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles. Eur Phys J B 87:23–25

    Article  Google Scholar 

  40. Tanabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721–15728

    Article  CAS  Google Scholar 

  41. Oskooi AF, Kottke C, Johnson SG (2009) Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing. Opt Lett 34(18):2778

    Article  Google Scholar 

  42. Zilio P, Dipalo M, Tantussi F, Messina GC, De Angelis F (2017) Hot electrons in water injection and ponderomotive acceleration by means of plasmonic nanoelectrodes. Light Sci Appl 6:e17002–8

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank ITMO Cancer from the French Plan Cancer Program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadele Orbula Otomalo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otomalo, T.O., Mayran de Chamisso, F. & Palpant, B. Complex-conjugate Pole-residue Pair-Based FDTD Method for Assessing Ultrafast Transient Plasmonic Near Field. Plasmonics 15, 495–505 (2020). https://doi.org/10.1007/s11468-019-01057-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01057-x

Keywords

Navigation