pp 1–8 | Cite as

Temperature Variations of Gold Nanoparticle and Dynamics of Plasmonic Bubble in Water Under Nanosecond Pulsed Laser

  • Hadi Movahedinejad
  • Hamid NadjariEmail author


Suspended gold nanoparticle in water medium starts to warm up under nanosecond laser irradiation and creates a bubble around itself. The present study aims at evaluating the amount of nanoparticle size reduction at boiling temperature, the temperature variations of the nanoparticle, and its medium and finally the bubble formation moment. To this aim, Mie theory was used to calculate the absorption cross section of the nanoparticle in proximity of the bubble. Heat transfer equations were applied to determine the temperature of the nanoparticle and water. In addition, hydrodynamic equations were initiated to evaluate the expansion of the bubble. Then, these three groups of equations were coupled together and solved numerically. Based on the results, the bubble forms at the critical pressure and consequently due to the slow bubble velocity, temperature gradient in the medium is observed. Further, slight pulse width variations play a significant role on the nanoparticle temperature. The calculation of the nanoparticle heating associated with the creation of the bubble helps in controlling nanoparticle size and understanding the nanoscale heat transfer processes.


Gold nanoparticle Nano bubble Hydrodynamic equations Nanoparticle heating 



  1. 1.
    Adler DC, Huang SW, Huber R, Fujimoto JG (2008) Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt Express 16(7):4376–4393CrossRefGoogle Scholar
  2. 2.
    Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  3. 3.
    Csaki A, Garwe F, Steinbrück A, Maubach G, Festag G, Weise A, Riemann I, König K, Fritzsche W (2007) A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas. Nano Lett 7(2):247–253CrossRefGoogle Scholar
  4. 4.
    Dagallier A, Boulais E, Boutopoulos C, Lachaine R, Meunier M (2017) Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles. Nanoscale 9(9):3023–3032CrossRefGoogle Scholar
  5. 5.
    Delfour L, Itina TE (2015) Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights. J Phys Chem C 119(24):13893–13900CrossRefGoogle Scholar
  6. 6.
    Espanol P (2001) Thermohydrodynamics for a van der Waals fluid. J Chem Phys 115(12):5392–5403CrossRefGoogle Scholar
  7. 7.
    Fales AM, Vogt WC, Pfefer J, Ilev IK (2017) Quantitative evaluation of nanosecond pulsed laser-induced photomodification of plasmonic gold nanoparticles. Scientific reports 7(1):15704CrossRefGoogle Scholar
  8. 8.
    Hastings FD, Schneider JB, Broschat SL (1996) Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. J Acoust Soc Am 100(5):3061–3069CrossRefGoogle Scholar
  9. 9.
    Katayama T, Setoura K, Werner D, Miyasaka H, Hashimoto S (2014) Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump–probe spectral measurements of aqueous colloidal gold nanoparticles. Langmuir 30(31):9504–9513CrossRefGoogle Scholar
  10. 10.
    Kotaidis V, Plech A (2005) Cavitation dynamics on the nanoscale. Appl Phys Lett 87(21):213102CrossRefGoogle Scholar
  11. 11.
    Kreider W, Crum LA, Bailey MR, Sapozhnikov OA (2011) A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound. J Acoust Soc Am 130(5):3511–3530CrossRefGoogle Scholar
  12. 12.
    Lapotko D (2009) Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. Opt Express 17(4):2538–2556CrossRefGoogle Scholar
  13. 13.
    Lapotko D (2009) Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications. Nanomedicine 4(7):813–845CrossRefGoogle Scholar
  14. 14.
    Liang Z, Evans W, Keblinski P (2013) Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces. Phys Rev E 87(2):022119CrossRefGoogle Scholar
  15. 15.
    Lombard J, Biben T, Merabia S (2014) Kinetics of nanobubble generation around overheated nanoparticles. Phys Rev Lett 112(10):105701CrossRefGoogle Scholar
  16. 16.
    Lombard J, Biben T, Merabia S (2015) Nanobubbles around plasmonic nanoparticles: thermodynamic analysis. Phys Rev E 91(4):043007CrossRefGoogle Scholar
  17. 17.
    Lombard J, Biben T, Merabia S (2017) Threshold for vapor nanobubble generation around plasmonic nanoparticles. J Phys Chem C 121(28):15402–15415CrossRefGoogle Scholar
  18. 18.
    Lukianova-Hleb E, Hanna E, Hafner J, Lapotko D (2010) Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology 21(8):085102CrossRefGoogle Scholar
  19. 19.
    Lukianova-Hleb E, Hu Y, Latterini L, Tarpani L, Lee S, Drezek RA, Hafner JH, Lapotko DO (2010) Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4(4):2109–2123CrossRefGoogle Scholar
  20. 20.
    Lukianova-Hleb EY, Lapotko DO (2009) Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles. Nano Lett 9(5):2160–2166CrossRefGoogle Scholar
  21. 21.
    Metwally K, Mensah S, Baffou G (2015) Fluence threshold for photothermal bubble generation using plasmonic nanoparticles. J Phys Chem C 119(51):28586–28596CrossRefGoogle Scholar
  22. 22.
    Novotny L, Hecht B (2012) Principles of nano-optics, Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Onuki A, Hao H, Ferrell RA (1990) Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point. Phys Rev A 41(4):2256CrossRefGoogle Scholar
  24. 24.
    Öttinger HC (2005) Beyond equilibrium thermodynamics. Wiley, New YorkCrossRefGoogle Scholar
  25. 25.
    Plech A, Kotaidis V, Grésillon S, Dahmen C, Von Plessen G (2004) Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. Phys Rev B 70(19):195423CrossRefGoogle Scholar
  26. 26.
    Prosperetti A, Crum LA, Commander KW (1988) Nonlinear bubble dynamics. J Acoust Soc Am 83 (2):502–514CrossRefGoogle Scholar
  27. 27.
    Sasikumar K, Keblinski P (2014) Molecular dynamics investigation of nanoscale cavitation dynamics. J Chem Phys 141(23):12B648_1CrossRefGoogle Scholar
  28. 28.
    Siems A, Weber S, Boneberg J, Plech A (2011) Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles. New J Phys 13(4):043018CrossRefGoogle Scholar
  29. 29.
    Stehr J, Hrelescu C, Sperling RA, Raschke G, Wunderlich M, Nichtl A, Heindl D, Kürzinger K, Parak WJ, Klar TA et al (2008) Gold nanostoves for microsecond dna melting analysis. Nano Lett 8 (2):619–623CrossRefGoogle Scholar
  30. 30.
    Strasser M, Setoura K, Langbein U, Hashimoto S (2014) Computational modeling of pulsed laser-induced heating and evaporation of gold nanoparticles. J Phys Chem C 118(44):25748–25755CrossRefGoogle Scholar
  31. 31.
    Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103(8):1226–1232CrossRefGoogle Scholar
  32. 32.
    Urban A, Fedoruk M, Horton M, Radler J, Stefani F, Feldmann J (2009) Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles. Nano Lett 9(8):2903–2908CrossRefGoogle Scholar
  33. 33.
    Wagnera W, Prußb A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387CrossRefGoogle Scholar
  34. 34.
    Wang Y, Xie X, Wang X, Ku G, Gill KL, O’Neal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692CrossRefGoogle Scholar
  35. 35.
    Werner D, Hashimoto S (2010) Improved working model for interpreting the excitation wavelength-and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles. J Phys Chem C 115 (12):5063–5072CrossRefGoogle Scholar
  36. 36.
    Yang AJ, Fleming PD III, Gibbs JH (1976) Molecular theory of surface tension. J Chem Phys 64 (9):3732–3747CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ZanjanZanjanIran

Personalised recommendations