pp 1–7 | Cite as

Numerical Study of the MSCB Nanoantenna as Ultra-broadband Absorber

  • Lu Zhu
  • Yue Jin
  • Kangkang Li
  • Huan Liu
  • Yuanyuan LiuEmail author


In this paper, we propose an ultra-broadband multi-slot cross bowtie (MSCB) nanoantenna for light absorption, whose elements compose of dual rectangles and cross bowtie and rectangular slots. The optical characteristics are analysis numerically by the three-dimensional finite-difference time-domain (FDTD) method. The results show that the average absorptivity of the nanostructure is over 90% in 400–1800-nm waveband, which covered the visible and near-infrared region. We attribute the better absorption property of the nanoantenna to the combining of plasmon coupling effects between slots, high-order modes, and surface plasmon resonance. Our work provides a promising method for the future developments of more advanced absorber for energy harvesting, thermoelectrics, and imaging.


Absorption Localized surface plasmon Ultra-broadband Nanostructures 


Funding Information

This research was funded by the National Nature Science Foundation of China (61967007,61963016), and the Outstanding Youth Talent Project of Jiangxi Provincial (20171BCB23062), and the Jiangxi Provincial Department of Education Science and Technology Research Key Project (GJJ170360).


  1. 1.
    Ropp C, Cummins Z, Nah S, Fourkas JT, Shapiro B, Waks E (2015) Nanoscale probing of image-dipole interactions in a metallic nanostructure. Nat Commun 6:6558CrossRefGoogle Scholar
  2. 2.
    Willets KA, Duyne RPV (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58(1):267–297CrossRefGoogle Scholar
  3. 3.
    Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6(9):2060–2065CrossRefGoogle Scholar
  4. 4.
    Liu C, Su W, Liu Q, Lu X, Sun T, Wang F, Chu PK (2018) Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt Express 26(7):9039–9049CrossRefGoogle Scholar
  5. 5.
    Eizner E, Avayu O, Ditcovski R, Ellenbogen T (2015) Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons. Nano Lett 15(9):6215–6221CrossRefGoogle Scholar
  6. 6.
    Li Y, Liu Z, Zhang H, Tang P, Wu B, Liu G (2019) Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt Express 27:11809–11818CrossRefGoogle Scholar
  7. 7.
    Liu G, Liu X, Chen J, Li Y, Shi L, Fu G, Liu Z (2019) Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters. Sol Energy Mater Sol Cells 190:20–29CrossRefGoogle Scholar
  8. 8.
    Li X, Choy WCH, Lu H, Sha WEI, Ho AHP (2013) Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv Funct Mater 23(21):2728–2735CrossRefGoogle Scholar
  9. 9.
    Wen L, Sun F, Chen Q (2014) Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells. Appl Phys Lett 104(15):151106CrossRefGoogle Scholar
  10. 10.
    Ding F, Mo L, Zhu J, He S (2015) Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber. Appl Phys Lett 106(6):061108CrossRefGoogle Scholar
  11. 11.
    López-Tejeira F, Paniagua-Domínguez R, Rodríguez-Oliveros R, Sánchezgil JA (2012) Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna. New J Phys 14(2):023035CrossRefGoogle Scholar
  12. 12.
    Zhu L, Wang Y, Liu Y, Yue C (2017) Design and analysis of ultra broadband nano-absorber for solar energy harvesting. PlasmonicsGoogle Scholar
  13. 13.
    Qiu W, Huang Y, Chen H, Qiu P, Wang JX (2017) Coupling of whispering-gallery modes in the graphene nanodisk plasmonic dimers. Plasmonics 12(1):39–45CrossRefGoogle Scholar
  14. 14.
    El-Toukhy YM, Hussein M, Hameed MFO, Obayya SSA (2017) Characterization of asymmetric tapered dipole nanoantenna for energy harvesting applications. Plasmonics 13(2):503–510CrossRefGoogle Scholar
  15. 15.
    Zhang J, Zhang W, Zhu X, Zhu X, Yang J, Xu J (2012) Resonant slot nanoantennas for surface plasmon radiation in optical frequency range. Appl Phys Lett 100(24):241115CrossRefGoogle Scholar
  16. 16.
    Liu Y, Li K, Cao S, Zhu L (2019) Plasmonics.
  17. 17.
    El-Toukhy YM, Hussein M, Hameed MF, Heikal AM, AbdElrazzak MM (2016) Optimized tapered dipole nanoantenna as efficient energy harvester. Opt Exp 24(14):A1107–A 1122CrossRefGoogle Scholar
  18. 18.
    Chekini A, Sheikhaei S, Neshat M (2017) A novel plasmonic nanoantenna structure for solar energy harvesting. Fourth International Conference on Millimeter-wave & Terahertz Technologies. IEEEGoogle Scholar
  19. 19.
    Cakmakyapan S, Cinel NA, Cakmak AO, Ozbay E (2014) Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas. Opt Express 22(16):19504–19512CrossRefGoogle Scholar
  20. 20.
    Andrews D, Zeno G (2007) Surface plasmon nanophotonics. Springer 131(1):1–9Google Scholar
  21. 21.
    Yang J, Zhou S, Hu C, Zhang W (2014) Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas. Laser Photonics Rev 8(4):590–595CrossRefGoogle Scholar
  22. 22.
    Huang F, Yang H, Li S, Jiang X, Sun X (2015) Tunable unidirectional coupling of surface plasmon polaritons utilizing a V-shaped slot nanoantenna column. Plasmonics 10(6):1825–1831CrossRefGoogle Scholar
  23. 23.
    Palik ED (1985) Handbook of optical constants of solids. Academic PressGoogle Scholar
  24. 24.
    Ono M, Kuramochi E, Zhang G, Sumikura H, Harada Y, Yuichi C, David Notomi M (2016) Nanowire-nanoantenna coupled system fabricated by nanomanipulation. Opt Express 24(8):8647–8659CrossRefGoogle Scholar
  25. 25.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  26. 26.
    Chau YF, Jiang JC, Chao CT, Chiang HP, Lim CM (2016) Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas. J Phys D Appl Phys 49(47):475102CrossRefGoogle Scholar
  27. 27.
    Yuan-Fong Chou Chau, Chung-Ting Chou Chao, Chee Ming Lim, Hung Ji Huang, Hai-Pang Chiang, (2018) Depolying Tunable Metal-Shell/Dielectric Core Nanorod Arrays as the Virtually Perfect Absorber in the Near-Infrared Regime. ACS Omega 3 (7):7508–7516CrossRefGoogle Scholar
  28. 28.
    Andrei Andryieuski, Andrei V. Lavrinenko, (2013) Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Optics Express 21 (7):9144CrossRefGoogle Scholar
  29. 29.
    Chau YF, Wang CK, Shen L, Lim CM, Chiang HP, Chao CT, Huang HJ, Lin CT, Kumara NTRN, Voo NY (2017) Simultaneous realization of high sensing sensitivity and tenability in plasmonic nanostructures arrays. Sci Rep 7(1):16817Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lu Zhu
    • 1
  • Yue Jin
    • 1
  • Kangkang Li
    • 1
  • Huan Liu
    • 1
  • Yuanyuan Liu
    • 1
    Email author
  1. 1.School of Information EngineeringEast China Jiaotong UniversityNanchangChina

Personalised recommendations