Advertisement

Plasmonics

pp 1–7 | Cite as

Dependence of Plasmon Spectra of Small Gold Nanoparticles from Their Size: an Atomic Force Microscopy Experimental Approach

  • P. GeorgievEmail author
  • S. Simeonova
  • R. Tsekov
  • K. Balashev
Article
  • 21 Downloads

Abstract

The spectra of small gold nanoparticles (GNPs) were theoretically described following the modified Mie equations and by adopting the Kriebig-Drude model. The experimental dependence of the absorption maximal intensity of small spherical GNPs versus their diameter was compared with a theoretically derived relation. The theoretical description is validated by simultaneously obtained data from UV-Vis plasmon absorption spectra together with the size of GNPs measured by means of atomic force microscopy (AFM).

Keywords

Small gold nanoparticles (GNPs) Surface plasmon resonance Size-dependent dielectric function Plasmon absorption spectra Atomic force microscopy (AFM) 

Notes

Funding Information

RT is thankful to the Bulgarian National Science Foundation for financial support via the Grant DRG 02/3.

References

  1. 1.
    Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7:26–31CrossRefGoogle Scholar
  2. 2.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRefGoogle Scholar
  3. 3.
    Wooten F (1972) Optical properties of solids. Academic Press, LondonGoogle Scholar
  4. 4.
    Ashcroft NW, Mermin ND (1976) Solid state physics. Brooks ColeGoogle Scholar
  5. 5.
    Gall D (2016) Electron mean free path in elemental metals. J Appl Phys 119:085101–085105CrossRefGoogle Scholar
  6. 6.
    Johnson P, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  7. 7.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  8. 8.
    Dushkin C, Miwa T, Nagayama K (1998) Gravity effect on the field deposition of two dimensional particle arrays. Chem Phys Lett 285:259–265CrossRefGoogle Scholar
  9. 9.
    García MA, Llopis J, Paje SE (1999) A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol gel films. Chem Phys Lett 315:313–320CrossRefGoogle Scholar
  10. 10.
    Hens Z, Vanmaekelbergh D, Kooij ES, Wormeester H, Allan G, Delerue C (2004) Effect of quantum confinement on the dielectric function of PbSe. Phys Rev Lett 92(2):0268081–0268084CrossRefGoogle Scholar
  11. 11.
    Losurdo M, Giangregorio M, Bianco G, Suvorova A, Kong C, Rubanov S, Capezzuto P, Humlicek J, Bruno G (2010) Size dependence of the dielectric function of silicon-supported plasmonic gold nanoparticles. Phys Rev B 82:155451–155459CrossRefGoogle Scholar
  12. 12.
    Stoller P, Jacobsen V, Sandoghar V (2006) Measurment of complex dielectric constant of a single gold nanoparticle. Opt Lett 31:2474–2476CrossRefGoogle Scholar
  13. 13.
    Klar T, Perner M, Grosse S, von Plessen G, Spirkl W, Feldmann J (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80:4249–4252CrossRefGoogle Scholar
  14. 14.
    Berciaud S, Cognet L, Tamarat P, Lounis B (2005) Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett 5:515–518CrossRefGoogle Scholar
  15. 15.
    Hohenester U, Krenn J (2005) Surface plasmon resonances of single and coupled metallic nanoparticles: a boundary integral method approach. Phys Rev B 72:195429CrossRefGoogle Scholar
  16. 16.
    Derkachova A, Kolwas K, Demchenko I (2016) Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics 11:941–951CrossRefGoogle Scholar
  17. 17.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Tsekov R, Georgiev P, Simeonova S, Balashev K (2017) Quantifying the blue shift in the light absorption of small gold nanoparticles. CR Acad Bulg Sci 70(9):1237–1246Google Scholar
  19. 19.
    Georgiev P, Bojinova A, Kostova B, Momekova D, Bjornholm T, Balashev K (2013) Implementing the atomic force microscopy for studing the kinetics of gold nanoparticle’s growth. Colloid Surf A-Physicochem Eng Asp 434(3):154–163CrossRefGoogle Scholar
  20. 20.
    Georgiev P, Simeonova S, Chanachev A, Michaylov L, Nihtianova D, Balashev K (2016) Acceleration effect of copper (II) ions on the rate of citrate synthesis of gold nanoparticles. Colloids and Surfaces A: Physicochem Eng Asp 494:39–48CrossRefGoogle Scholar
  21. 21.
    Watzky M, Finke R (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400CrossRefGoogle Scholar
  22. 22.
    Morris A, Watzky M, Agar J, Finke R (2008) Fitting neurological protein aggregation kinetic data via a 2-step, minimal/“Ockham’s razor” model: the Finke–Watzky mechanism of nucleation followed by autocatalytic surface growth. Biochemistry-US 47(8):2413–2427CrossRefGoogle Scholar
  23. 23.
    Turkevich J, Stevenson P, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  24. 24.
    Lide DR (ed) (1996) Handbook of chemistry and physics, 77 edition. CRC Press, Boca Raton, pp 12–130, 12-44Google Scholar
  25. 25.
    Kriebig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678–700CrossRefGoogle Scholar
  26. 26.
    Shiang J, Heath J, Collier C, Saykally R (1998) Cooperative phenomena in artificial solids made from silver quantum dots: the importance of classical coupling. J Phys Chem B 102:3425–3430CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Georgiev
    • 1
    Email author
  • S. Simeonova
    • 1
  • R. Tsekov
    • 1
  • K. Balashev
    • 1
  1. 1.Department of Physical Chemistry, Faculty of Chemistry and PharmacyUniversity of SofiaSofiaBulgaria

Personalised recommendations