Localized Surface Plasmon Resonances of Simple Tunable Plasmonic Nanostructures
Abstract
We derive and present systematic relationships between the analytical formulas for calculation of the localized surface plasmon resonances (LSPR) of some plasmonic nanostructures which we have categorized as simple. These relationships, including some new formulas, are summarized in a tree diagram which highlights the core-shell plasmons as the generators of solid and cavity plasmons. In addition, we show that the LSPR of complex structures can be reduced to that of simpler ones, using the LSPR of a nanorice as a case study, in the dipole limit. All the formulas were derived using a combination of the Drude model, the Rayleigh approximation, and the Fröhlich condition. The formulas are handy and they are in good agreement with the results of the plasmon hybridization theory. The formulas also account for dielectric effects, which provide versatility in the tuning of the LSPR of the nanostructures. A simplified model of plasmon hybridization is presented, allowing us to investigate the weak-coupling regimes of solid and cavity plasmons in the core-shell nanostructures we have studied.
Keywords
Gold Localized surface plasmons (LSP) Local response approximation (LRA) Localized surface plasmon resonance (LSPR) Electrostatic polarizability Symmetrization Anti-symmetrization Dielectric reversal Geometric reduction Plasmon hybridizationNotes
Acknowledgments
We wish to thank Vincenzo Giannini for his advice on the manuscript.
Funding Information
L. C. U. was sponsored by the National Research Foundation (NRF) and the University of Pretoria. T. M. was supported by the Czech Science Foundation (GACR) grant no. 17-22160S. T. P. J. K. was supported by the NRF project nos. 109302 and 112085.
Compliance with Ethical Standards
Conflict of interests
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.Ringe E, Sharma B, Henry AI, Marks LD, Van Duyne RP (2013) Single nanoparticle plasmonics. Phys Chem Chem Phys 15:4110–4129CrossRefPubMedGoogle Scholar
- 2.Maier SA (2007) Plasmonics: fundamentals and applications. Springer science & Business mediaGoogle Scholar
- 3.Sattler KD (2016) Handbook of nanophysics: nanoparticles and quantum dots. CRC PressCrossRefGoogle Scholar
- 4.Wu Y, Nordlander P (2006) Plasmon hybridization in nanoshells with a nonconcentric core. J Chem Phys 125:124708CrossRefPubMedGoogle Scholar
- 5.Norton SJ, Vo-Dinh T (2016) Optical Fano resonances in a nonconcentric nanoshell. Appl Opt 55:2611–2618CrossRefPubMedGoogle Scholar
- 6.Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111:3888–3912CrossRefPubMedGoogle Scholar
- 7.Schmidt FP, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR (2012) Dark plasmonic breathing modes in silver nanodisks. Nano Lett 12:5780–5783CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444–5454CrossRefPubMedGoogle Scholar
- 9.Ye J, Van Dorpe P, Lagae L, Maes G, Borghs G (2009) Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures. Nanotechnology 20:465203CrossRefPubMedGoogle Scholar
- 10.Barnes WL (2016) Particle plasmons: why shape matters. Am J Phys 84:593–601CrossRefGoogle Scholar
- 11.Moroz A (2009) Depolarization field of spheroidal particles. J Opt Soc Am B 26:517–527CrossRefGoogle Scholar
- 12.Kalyaniwalla N, Haus JW, Inguva R, Birnboim MH (1990) Intrinsic optical bistability for coated spheroidal particles. Phys Rev A 42:5613CrossRefPubMedGoogle Scholar
- 13.Farafonov VG, Vinokurov AA, Barkanov SV (2011) Electrostatic solution and Rayleigh approximation for small nonspherical particles in a spheroidal basis. Opt Spectrosc 111:980–992CrossRefGoogle Scholar
- 14.Farafonov VG, Voshchinnikov NV, Somsikov VV (1996) Light scattering by a core-mantle spheroidal particle. Appl Opt 35:5412–5426CrossRefPubMedGoogle Scholar
- 15.Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6:827–832Google Scholar
- 16.Sepúlveda B, Alaverdyan Y, Alegret J, Käll M, Johansson P (2008) Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films. Opt Express 16:5609–5616CrossRefPubMedGoogle Scholar
- 17.Dalarsson M, Nordebo S, Sjöberg D, Bayford R (2017) Absorption and optimal plasmonic resonances for small ellipsoidal particles in lossy media. J Phys D 50:345401CrossRefGoogle Scholar
- 18.Zuloaga J, Prodan E, Nordlander P (2010) Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS nano 4:5269–5276CrossRefPubMedGoogle Scholar
- 19.Davis TJ, Gómez DE, Vernon KC (2010) Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles. Nano Lett 10:2618–2625CrossRefPubMedGoogle Scholar
- 20.Knight MW, Halas NJ (2008) Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit. New J Phys 10:105006CrossRefGoogle Scholar
- 21.Liu J, Maaroof AI, Wieczorek L, Cortie MB (2005) Fabrication of hollow metal “Nanocaps” and their red-shifted optical absorption spectra. Adv Mater 17:1276–1281CrossRefGoogle Scholar
- 22.Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038CrossRefPubMedGoogle Scholar
- 23.Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065CrossRefPubMedGoogle Scholar
- 24.Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6:683–688CrossRefPubMedGoogle Scholar
- 25.Wientjes E, Renger J, Curto AG, Cogdell R, van Hulst NF (2014) Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching. Nat Commun 5:4236CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Chowdhury MH, Ray K, Gray SK, Pond J, Lakowicz JR (2009) Aluminum nanoparticles as substrates for Metal-Enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules. Anal Chem 81:1397–1403CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Tserkezis C, Stefanou N, Wubs M, Mortensen NA (2016) Molecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects. Nanoscale 8:17532CrossRefPubMedGoogle Scholar
- 28.Li Q, Jiang Y, Han R, Zhong X, Liu S, Li ZY, Xu D (2013) High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging. Small 9:927–932CrossRefPubMedGoogle Scholar
- 29.Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453CrossRefGoogle Scholar
- 30.Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706CrossRefGoogle Scholar
- 31.Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Krivenkov V, Goncharov S, Nabiev I, Rakovich YP (2019) Induced transparency in plasmon-exciton nanostructures for sensing applications. Laser Photonics Rev 13:1800176CrossRefGoogle Scholar
- 33.Catchpole KA, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800CrossRefPubMedGoogle Scholar
- 34.Li X, Choy WC, Huo L, Xie F, Sha WE, Ding B, Yang Y (2012) Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater 24:3046–3052CrossRefPubMedGoogle Scholar
- 35.Ding B, Yang M, Lee BJ (2013) Tunable surface plasmons of dielectric core-metal shell particles for dye sensitized solar cells. RSC Adv 3:9690–9697CrossRefGoogle Scholar
- 36.Bharadwaj P, Anger P, Novotny L (2007) Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology 18:044017CrossRefGoogle Scholar
- 37.Kern AM, Meixner AJ, Martin OJF (2012) Molecule-dependent plasmonic enhancement of fluorescence and Raman scattering near realistic Nanostructures. ACS Nano 6:9828–9836CrossRefPubMedGoogle Scholar
- 38.Kyeyune F, Botha JL, van Heerden B, Malý P, van Grondelle R, Diale M, Krüger TPJ (2019) Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes. Nanoscale, https://doi.org/10.1039/C9NR04558A
- 39.Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AA, Atwater HA (2011) Plasmonics—a route to nanoscale optical devices. Adv Mater 15:562–562CrossRefGoogle Scholar
- 40.Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7:169–183CrossRefPubMedGoogle Scholar
- 41.Mukhopadhyay G, Lundqvist S (1982) The dipolar plasmon modes of a small metallic sphere. Solid State Commun 44:1379–1381CrossRefGoogle Scholar
- 42.Prodan E, Nordlander P (2003) Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett 3:543–547CrossRefGoogle Scholar
- 43.Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, de Abajo FJG (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805CrossRefPubMedGoogle Scholar
- 44.Zhang J, Zayats A (2013) Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures. Opt Express 21:8426–8436CrossRefPubMedGoogle Scholar
- 45.Raza S, Bozhevolnyi SI, Wubs M, Mortensen NA (2014) Nonlocal optical response in metallic nanostructures. J Phys Condens Matter 27:183204CrossRefGoogle Scholar
- 46.Böttcher CJF, Van Belle OC, Bordewijk P, Rip A (1973) Theory of electric polarization, 2nd edn. Elsevier Science, AmsterdamGoogle Scholar
- 47.Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. John Wiley & Sons IncGoogle Scholar
- 48.Scaife BKP (1999) The dielectric spheroid revisited. J Mol Struct 479:285–297CrossRefGoogle Scholar
- 49.Neeves AE, Birnboim MH (1989) Composite structures for the enhancement of nonlinear-optical susceptibility. J Opt Soc Am B 6:787–796CrossRefGoogle Scholar
- 50.Derkachova A, Kolwas K, Demchenko I (2016) Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics 11:941–951CrossRefPubMedGoogle Scholar
- 51.Dmitri S, Baptiste A, Eric CL (2013) Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells. Phys Chem Chem Phys 15:4233–4242CrossRefGoogle Scholar
- 52.Kreibig U, Genzel L (1985) Optical absorption of small metal particles. Surf Sci 156:678–700CrossRefGoogle Scholar
- 53.Ford GW, Weber WH (1984) Electromagnetic interactions of molecules with metal surfaces. Phys Rep 113:195–287CrossRefGoogle Scholar