Advertisement

Plasmonics

, Volume 14, Issue 6, pp 2013–2019 | Cite as

Fano Resonances as Optical Markers of Sub-Wavelength Nanoparticle Packaging and Elemental Segregation in Laser-Dewetted Au-Pd Film

  • N. I. BusleevEmail author
  • A. K. Ivanova
  • S. I. Kudryashov
  • A. A. Rudenko
  • D. A. Zayarny
  • A. A. Ionin
Article
  • 95 Downloads

Abstract

A 50-nm-thick alloyed gold-palladium film on a silica substrate was dewetted by 1060-nm/ns laser pulses and characterized by scanning electron microscopy. Optical transmission spectroscopy of the millimeter-sized spot of the dewetted film demonstrates pronounced Fano resonances, typical for large regular arrays of oligomers of plasmonic nanoparticles. The oligomer configuration and almost pure gold composition of the nanoparticles, underlying the spectral Fano resonances, were revealed via numerical simulations with the input electron microscopy visualization and hydrogen absorption tests. The promising application of Fano resonance for simple optical characterization of ordering or packaging parameters in large-scale arrays of deeply sub-wavelength plasmonic and/or dielectric nano-oligomers was proposed.

Keywords

Plasmonic gold-palladium film Nanosecond laser dewetting Oligomer Fano resonance 

Notes

Funding Information

This work was supported by the Presidium of RAS (Program 32 “Nanostructures: physics, chemistry, biology and fundamentals of technologies”).

References

  1. 1.
    Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878.  https://doi.org/10.1103/PhysRev.124.1866 CrossRefGoogle Scholar
  2. 2.
    Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707.  https://doi.org/10.1038/nmat2810 CrossRefPubMedGoogle Scholar
  3. 3.
    Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298.  https://doi.org/10.1103/RevModPhys.82.2257 CrossRefGoogle Scholar
  4. 4.
    Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano Resonance. Nano Lett 8(11):3983–3988.  https://doi.org/10.1021/nl802509r CrossRefPubMedGoogle Scholar
  5. 5.
    Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9(4):1663–1667.  https://doi.org/10.1021/nl9001876 CrossRefPubMedGoogle Scholar
  6. 6.
    Rahmani M, Luk’yanchuk B, Hong M (2013) Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7(3):329–349.  https://doi.org/10.1002/lpor.201200021 CrossRefGoogle Scholar
  7. 7.
    Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328(5982):1135.  https://doi.org/10.1126/science.1187949 CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang Y, Wen F, Zhen Y-R, Nordlander P, Halas NJ (2013) Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc Natl Acad Sci 110(23):9215.  https://doi.org/10.1073/pnas.1220304110 CrossRefPubMedGoogle Scholar
  9. 9.
    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10(7):2721–2726.  https://doi.org/10.1021/nl101938p CrossRefPubMedGoogle Scholar
  10. 10.
    Bao K, Mirin NA, Nordlander P (2010) Fano resonances in planar silver nanosphere clusters. Applied Physics A 100(2):333–339.  https://doi.org/10.1007/s00339-010-5861-3 CrossRefGoogle Scholar
  11. 11.
    Hopkins B, Poddubny AN, Miroshnichenko AE, Kivshar YS (2013) Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys Rev A 88(5):053819.  https://doi.org/10.1103/PhysRevA.88.053819 CrossRefGoogle Scholar
  12. 12.
    Mirin NA, Bao K, Nordlander P (2009) Fano resonances in plasmonic nanoparticle aggregates. J Phys Chem A 113(16):4028–4034.  https://doi.org/10.1021/jp810411q CrossRefPubMedGoogle Scholar
  13. 13.
    Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189.  https://doi.org/10.1021/nl102108u CrossRefGoogle Scholar
  14. 14.
    Ye J, Wen F, Sobhani H, Lassiter JB, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the fano resonance interrogated with SERS. Nano Lett 12(3):1660–1667.  https://doi.org/10.1021/nl3000453 CrossRefPubMedGoogle Scholar
  15. 15.
    Le KQ, Alù A, Bai J (2015) Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers. J Appl Phys 117(2):023118.  https://doi.org/10.1063/1.4905619 CrossRefGoogle Scholar
  16. 16.
    Chang W-S, Lassiter JB, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas NJ, Link S (2012) A plasmonic fano switch. Nano Lett 12(9):4977–4982.  https://doi.org/10.1021/nl302610v CrossRefPubMedGoogle Scholar
  17. 17.
    Emani NK, Chung T-F, Kildishev AV, Shalaev VM, Chen YP, Boltasseva A (2014) Electrical modulation of fano resonance in plasmonic nanostructures using graphene. Nano Lett 14(1):78–82.  https://doi.org/10.1021/nl403253c CrossRefPubMedGoogle Scholar
  18. 18.
    Cui Y, Zhou J, Tamma VA, Park W (2012) Dynamic tuning and symmetry lowering of fano resonance in plasmonic nanostructure. ACS Nano 6(3):2385–2393.  https://doi.org/10.1021/nn204647b CrossRefPubMedGoogle Scholar
  19. 19.
    Dregely D, Hentschel M, Giessen H (2011) Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters. ACS Nano 5(10):8202–8211.  https://doi.org/10.1021/nn202876k CrossRefPubMedGoogle Scholar
  20. 20.
    Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6(6):5130–5137.  https://doi.org/10.1021/nn3007898 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663.  https://doi.org/10.1021/nl200135r CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ye F, Burns MJ, Naughton MJ (2014) Symmetry-broken metamaterial absorbers as reflectionless directional couplers for surface plasmon polaritons in the visible range. Advanced Optical Materials 2(10):957–965.  https://doi.org/10.1002/adom.201400080 CrossRefGoogle Scholar
  23. 23.
    Singh R, Al-Naib IAI, Koch M, Zhang W (2010) Asymmetric planar terahertz metamaterials. Opt Express 18(12):13044–13050.  https://doi.org/10.1364/OE.18.013044 CrossRefPubMedGoogle Scholar
  24. 24.
    Singh R, Al-Naib IAI, Yang Y, Roy Chowdhury D, Cao W, Rockstuhl C, Ozaki T, Morandotti R, Zhang W (2011) Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl Phys Lett 99(20):201107.  https://doi.org/10.1063/1.3659494 CrossRefGoogle Scholar
  25. 25.
    Chowdhury DR, Su X, Zeng Y, Chen X, Taylor AJ, Azad A (2014) Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials. Opt Express 22(16):19401–19410.  https://doi.org/10.1364/OE.22.019401 CrossRefPubMedGoogle Scholar
  26. 26.
    Park DJ, Shin JH, Park KH, Ryu HC (2018) Electrically controllable THz asymmetric split-loop resonator with an outer square loop based on VO2. Opt Express 26(13):17397–17406.  https://doi.org/10.1364/OE.26.017397 CrossRefPubMedGoogle Scholar
  27. 27.
    Burrow JA, Yahiaoui R, Sarangan A, Agha I, Mathews J, Searles TA (2017) Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces. Opt Express 25(26):32540–32549.  https://doi.org/10.1364/OE.25.032540 CrossRefGoogle Scholar
  28. 28.
    Yang S, Liu Z, Xia X, E Y TC, Wang Y, Li J, Wang L, Gu C (2016) Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials. Phys Rev B 93(23):235407.  https://doi.org/10.1103/PhysRevB.93.235407 CrossRefGoogle Scholar
  29. 29.
    Zheng X, Zhao Z, Shi W, Peng W (2017) Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules. Opt Mater Express 7(3):1035–1047.  https://doi.org/10.1364/OME.7.001035 CrossRefGoogle Scholar
  30. 30.
    Bochkova E, Han S, de Lustrac A, Singh R, Burokur SN, Lupu A (2018) High-Q Fano resonances via direct excitation of an antisymmetric dark mode. Opt Lett 43(16):3818–3821.  https://doi.org/10.1364/OL.43.003818 CrossRefPubMedGoogle Scholar
  31. 31.
    Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI (2007) Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett 99(14):147401.  https://doi.org/10.1103/PhysRevLett.99.147401 CrossRefPubMedGoogle Scholar
  32. 32.
    Shi JH, Zhu Z, Ma HF, Jiang WX, Cui TJ (2012) Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial. J Appl Phys 112(7):073522.  https://doi.org/10.1063/1.4757961 CrossRefGoogle Scholar
  33. 33.
    Wei Z, Cao Y, Fan Y, Yu X, Li H (2011) Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl Phys Lett 99(22):221907.  https://doi.org/10.1063/1.3664774 CrossRefGoogle Scholar
  34. 34.
    Shi J, Liu X, Yu S, Lv T, Zhu Z, Feng Ma H, Jun Cui T (2013) Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial. Appl Phys Lett 102(19):191905.  https://doi.org/10.1063/1.4805075 CrossRefGoogle Scholar
  35. 35.
    Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: Nanoparticles with Built-in Fano Resonances. Nano Lett 10(7):2694–2701.  https://doi.org/10.1021/nl1016392 CrossRefPubMedGoogle Scholar
  36. 36.
    Peña-Rodríguez O, Pal U (2011) Au@Ag core–shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale 3(9):3609–3612.  https://doi.org/10.1039/C1NR10625B CrossRefPubMedGoogle Scholar
  37. 37.
    Chen H, Shao L, Man YC, Zhao C, Wang J, Yang B (2012) Fano resonance in (gold core)−(dielectric shell) nanostructures without symmetry breaking. Small 8(10):1503–1509.  https://doi.org/10.1002/smll.201200032 CrossRefPubMedGoogle Scholar
  38. 38.
    Liu W, Miroshnichenko AE, Neshev DN, Kivshar YS (2012) Polarization-independent Fano resonances in arrays of core-shell nanoparticles. Phys Rev B 86(8):081407.  https://doi.org/10.1103/PhysRevB.86.081407 CrossRefGoogle Scholar
  39. 39.
    Yang Z-J, Wang Q-Q, Lin H-Q (2013) Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle clusters. Appl Phys Lett 103(11):111115.  https://doi.org/10.1063/1.4821187 CrossRefGoogle Scholar
  40. 40.
    Favazza C, Kalyanaraman R, Sureshkumar R (2006) Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology 17(16):4229–4234.  https://doi.org/10.1088/0957-4484/17/16/038 CrossRefPubMedGoogle Scholar
  41. 41.
    Berean KJ, Sivan V, Khodasevych I, Boes A, Della Gaspera E, Field MR, Kalantar-Zadeh K, Mitchell A, Rosengarten G (2016) Laser-induced dewetting for precise local generation of au nanostructures for tunable solar absorption. Advanced Optical Materials 4(8):1247–1254.  https://doi.org/10.1002/adom.201600166 CrossRefGoogle Scholar
  42. 42.
    Oh Y, Lee J, Lee M (2018) Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films. Appl Surf Sci 434:1293–1299.  https://doi.org/10.1016/j.apsusc.2017.11.245 CrossRefGoogle Scholar
  43. 43.
    Zuev D, Makarov S (2018) Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems AU - Ye, Jongpil. Int Mater Rev:1–39.  https://doi.org/10.1080/09506608.2018.1543832 CrossRefGoogle Scholar
  44. 44.
    Makarov SV, Milichko VA, Mukhin IS, Shishkin II, Zuev DA, Mozharov AM, Krasnok AE, Belov PA (2016) Controllable femtosecond laser-induced dewetting for plasmonic applications. Laser Photonics Rev 10(1):91–99.  https://doi.org/10.1002/lpor.201500119 CrossRefGoogle Scholar
  45. 45.
    Oh Y, Lee M (2017) Single-pulse transformation of Ag thin film into nanoparticles via laser-induced dewetting. Appl Surf Sci 399:555–564.  https://doi.org/10.1016/j.apsusc.2016.12.027 CrossRefGoogle Scholar
  46. 46.
    Miroshnichenko AE, Kivshar YS (2012) Fano resonances in all-dielectric oligomers. Nano Lett 12(12):6459–6463.  https://doi.org/10.1021/nl303927q CrossRefPubMedGoogle Scholar
  47. 47.
    Chong KE, Hopkins B, Staude I, Miroshnichenko AE, Dominguez J, Decker M, Neshev DN, Brener I, Kivshar YS (2014) Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10(10):1985–1990.  https://doi.org/10.1002/smll.201303612 CrossRefPubMedGoogle Scholar
  48. 48.
    Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk’yanchuk B (2016) Optically resonant dielectric nanostructures. Science 354(6314):aag2472.  https://doi.org/10.1126/science.aag2472 CrossRefPubMedGoogle Scholar
  49. 49.
    Limonov MF, Rybin MV, Poddubny AN, Kivshar YS (2017) Fano resonances in photonics. Nat Photonics 11:543.  https://doi.org/10.1038/nphoton.2017.142 CrossRefGoogle Scholar
  50. 50.
    Ferrer D, Torres-Castro A, Gao X, Sepúlveda-Guzmán S, Ortiz-Méndez U, José-Yacamán M (2007) Three-layer core/shell structure in Au−Pd bimetallic nanoparticles. Nano Lett 7(6):1701–1705.  https://doi.org/10.1021/nl070694a CrossRefPubMedGoogle Scholar
  51. 51.
    Wang D, Villa A, Porta F, Prati L, Su D (2008) Bimetallic gold/palladium catalysts: correlation between nanostructure and synergistic effects. J Phys Chem C 112(23):8617–8622.  https://doi.org/10.1021/jp800805e CrossRefGoogle Scholar
  52. 52.
    Pittaway F, Paz-Borbón LO, Johnston RL, Arslan H, Ferrando R, Mottet C, Barcaro G, Fortunelli A (2009) Theoretical studies of palladium−gold nanoclusters: Pd−Au clusters with up to 50 atoms. J Phys Chem C 113(21):9141–9152.  https://doi.org/10.1021/jp9006075 CrossRefGoogle Scholar
  53. 53.
    Tribelsky MI, Luk’yanchuk BS (2006) Anomalous light scattering by small particles. Phys Rev Lett 97(26):263902.  https://doi.org/10.1103/PhysRevLett.97.263902 CrossRefPubMedGoogle Scholar
  54. 54.
    Tribelsky MI, Flach S, Miroshnichenko AE, Gorbach AV, Kivshar YS (2008) Light scattering by a finite obstacle and Fano resonances. Phys Rev Lett 100(4):043903.  https://doi.org/10.1103/PhysRevLett.100.043903 CrossRefPubMedGoogle Scholar
  55. 55.
    Joe YS, Satanin AM, Kim CS (2006) Classical analogy of Fano resonances. Phys Scr 74(2):259–266.  https://doi.org/10.1088/0031-8949/74/2/020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lebedev Physical InstituteMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations