Advertisement

Plasmonics

, Volume 14, Issue 6, pp 2003–2011 | Cite as

A Narrow Spectrum Terahertz Emitter Based on Graphene Photoconductive Antenna

  • G. Jemima NissiyahEmail author
  • M. Ganesh Madhan
Article
  • 111 Downloads

Abstract

Many terahertz applications such as sensing, imaging, and spectroscopy require coherent terahertz (THz) sources. A basic Ti-Au dipole antenna on GaAs substrate is designed initially and it is enhanced into a photoconductive antenna for terahertz emission. A spectral width of 120 GHz is obtained from the emission spectrum. In order to compare the spectral characteristics, a graphene dipole antenna is designed on the same substrate. It is observed that graphene dipole yields a narrower spectral width of 70 GHz, due to its high Q factor. Spectral width of the graphene dipole antenna is further made narrow to 25 GHz, by incorporating a λ/4 stub on the stripline to produce a filtering operation. The antenna provides a directivity of 6.14 dBi with stub which shows an improvement of 0.3 dB when compared with an antenna without stub.

Keywords

Graphene Terahertz emitters Femtosecond lasers Photoconduction THz sensing Narrowband Stub 

Notes

Funding Information

One of the authors, G. Jemima Nissiyah, received financial support for this research work from “Visvesvaraya PhD scheme of Electronics and IT” (Lr.No.PhD-MLA/ 4(65)/2015-16/01, dt.16.03.2016), DeitY.

References

  1. 1.
    Pickwell E, Wallace V (2006) Biomedical applications of terahertz technology. J Phys D Appl Phys 39(17):R301–R310Google Scholar
  2. 2.
    Mattauch R, Crowe T (1987) GaAs Schottky devices for submillimeter wavelengths. Int J Infrared Millimeter Waves 8(10):1235–1241Google Scholar
  3. 3.
    Kozlov G, Volkov A (1998) Millimeter and submillimeter wave spectroscopy of solids. Top Appl Phys 74:51–109Google Scholar
  4. 4.
    Glyavin MY, Luchinin AG, Golubiatnikov GY (2008) Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys Rev Lett 100(1):015101PubMedGoogle Scholar
  5. 5.
    Sirtori C, Dhillon S, Faugeras C, Vasanelli A, Marcadet X (2006) Quantum cascade lasers: the semiconductor solution for lasers in the mid-and far-infrared spectral regions. Phys Status Solidi (A) 203(14):3533–3537Google Scholar
  6. 6.
    Köhler R, Tredicucci A, Beltram F, Beere HE, Linfield EH, Davies AG, Ritchie DA, Iotti RC, Rossi F (2002) Terahertz semiconductor-heterostructure laser. Nature 417(6885):156–159PubMedGoogle Scholar
  7. 7.
    Wu Q, Zhang XC (1996) Ultrafast electro-optic field sensors. Appl Phys Lett 68(12):1604–1606Google Scholar
  8. 8.
    Tan P, Huang J, Liu K, Xiong Y, Fan M (2012) Terahertz radiation sources based on free electron lasers and their applications. SCIENCE CHINA Inf Sci 55(1):1–15Google Scholar
  9. 9.
    Tani M, Hirota Y, Que CT, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M (2006) Novel terahertz photoconductive antennas. Int J Infrared Millimeter Waves 27(4):531–546Google Scholar
  10. 10.
    Huang Y, Khiabani N, Shen Y, Li D (2011) Terahertz photoconductive antenna efficiency. In: 2011 International Workshop on Antenna Technology (iWAT). IEEE, Piscataway, pp 152–156Google Scholar
  11. 11.
    Sze SM, Ng KK (2006) Physics of semiconductor devices. John wiley & sons, HobokenGoogle Scholar
  12. 12.
    Vieweg N, Mikulics M, Scheller M, Ezdi K, Wilk R, Hübers H-W, Koch M (2008) Impact of the contact metallization on the performance of photoconductive THz antennas. Opt Express 16(24):19695–19705PubMedGoogle Scholar
  13. 13.
    Baca A, Ren F, Zolper J, Briggs R, Pearton S (1997) A survey of ohmic contacts to III-V compound semiconductors. Thin Solid Films 308:599–606Google Scholar
  14. 14.
    Newman N, Van Schilfgaarde M, Kendelwicz T, Williams M, Spicer W (1986) Electrical study of Schottky barriers on atomically clean GaAs (110) surfaces. Phys Rev B 33(2):1146–1159Google Scholar
  15. 15.
    Hoffmann MC, Fülöp JA (2011) Intense ultrashort terahertz pulses: generation and applications. J Phys D Appl Phys 44(8):083001Google Scholar
  16. 16.
    Jepsen PU, Jacobsen RH, Keiding S (1996) Generation and detection of terahertz pulses from biased semiconductor antennas. JOSA B 13(11):2424–2436Google Scholar
  17. 17.
    Hu B, Weling A, Auston D, Kuznetsov A, Stanton C (1994) dc-electric-field dependence of THz radiation induced by femtosecond optical excitation of bulk GaAs. Phys Rev B 49(3):2234Google Scholar
  18. 18.
    Khiabani N, Huang Y, Shen Y-c, Boyes S, Xu Q (2013) A novel simulation method for THz photoconductive antenna characterization. In: 2013 7th European Conference on Antennas and Propagation (EuCAP). IEEE, Piscataway, pp 751–754Google Scholar
  19. 19.
    Grigorenko A, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6(11):749–758Google Scholar
  20. 20.
    Novoselov KS, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197PubMedGoogle Scholar
  21. 21.
    Wu Y, Qu M, Liu Y, Ghassemlooy Z (2017) A broadband graphene-based THz coupler with wide-range tunable power-dividing ratios. Plasmonics 12(5):1487–1492Google Scholar
  22. 22.
    H-q X, Pan Q-X, Hu J, Yin W-Y (2015) Design of a novel graphene terahertz antenna at 500ghz with reconfigurable radiation pattern. In: 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, Piscataway, pp 1462–1463Google Scholar
  23. 23.
    Qin X, Chen J, Xie C, Xu N, Shi J (2016) A tunable THz dipole antenna based on graphene. In: 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, Piscataway, pp 1–3Google Scholar
  24. 24.
    Luo X (2015) Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58(9):594201Google Scholar
  25. 25.
    Nemati A, Wang Q, Hong M, Teng J (2018) Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1(05):180009Google Scholar
  26. 26.
    Khiabani N (2013) Modelling, design and characterisation of terahertz photoconductive antennas. University of Liverpool, LiverpoolGoogle Scholar
  27. 27.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669Google Scholar
  28. 28.
    Le T-SD, An J, Kim Y-J (2017) Femtosecond laser direct writing of graphene oxide film on polydimethylsiloxane (PDMS) for flexible and stretchable electronics. In: 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, Piscataway, pp 1–4Google Scholar
  29. 29.
    Cao G, Gan X, Lin H, Jia B (2018) An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electronic Advances 1(07):180012Google Scholar
  30. 30.
    Nissiyah GJ, Madhan MG, P (2018) Graphene-based photoconductive antenna structures for directional terahertz emission. Plasmonics 1–10.  https://doi.org/10.1007/s11468-018-0871-7 Google Scholar
  31. 31.
    Dash S, Patnaik A (2018) Performance of graphene plasmonic antenna in comparison with their counterparts for low-terahertz applications. Plasmonics 13(6):2353–2360Google Scholar
  32. 32.
    Beck M, Rousseau I, Klammer M, Leiderer P, Mittendorff M, Winnerl S, Helm M, Gol’tsman GN, Demsar J (2013) Transient increase of the energy gap of superconducting NbN thin films excited by resonant narrow-band terahertz pulses. Phys Rev Lett 110(26):267003PubMedGoogle Scholar
  33. 33.
    Weling A, Hu B, Froberg N, Auston D (1994) Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas. Appl Phys Lett 64(2):137–139Google Scholar
  34. 34.
    Ahr F, Jolly SW, Matlis NH, Carbajo S, Kroh T, Ravi K, Schimpf DN, Schulte J, Ishizuki H, Taira T (2017) Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate. Opt Lett 42(11):2118–2121PubMedGoogle Scholar
  35. 35.
    Liu Y, Park S-G, Weiner AM (1996) Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping. Opt Lett 21(21):1762–1764PubMedGoogle Scholar
  36. 36.
    Krause J, Wagner M, Winnerl S, Helm M, Stehr D (2011) Tunable narrowband THz pulse generation in scalable large area photoconductive antennas. Opt Express 19(20):19114–19121PubMedGoogle Scholar
  37. 37.
    Yoon KC, Kim JH, Lee JC (2010) Compact narrow band-pass filter with λG/4 short stubs using impedance mismatching of the transmission line. Microw Opt Technol Lett 52(9):2002–2005Google Scholar
  38. 38.
    Lee J-R, Cho J-H, Yun S-W (2000) New compact bandpass filter using microstrip/spl lambda//4 resonators with open stub inverter. IEEE Microwave and Guided Wave Letters 10(12):526–527Google Scholar
  39. 39.
    Tu W-H, Chang K (2005) Compact microstrip bandstop filter using open stub and spurline. IEEE Microw Wirel Compon Lett 15(4):268–270Google Scholar
  40. 40.
    Emadi R, Barani N, Safian R, Nezhad AZ (2016) Hybrid computational simulation and study of terahertz pulsed photoconductive antennas. J. Infrared Millim Terahertz Waves 37(11):1069–1085Google Scholar
  41. 41.
    Khiabani N, Huang Y, Shen Y-C, Boyes S (2013) Theoretical modeling of a photoconductive antenna in a terahertz pulsed system. IEEE Trans Antennas Propag 61(4):1538–1546Google Scholar
  42. 42.
    Diao J, Yang F, Du L, Ouyang J, Yang P (2011) Enhancing terahertz radiation from dipole photoconductive antenna by blending tips. PIER Letters 25:127–134Google Scholar
  43. 43.
    Jafari H, Heidarzadeh H, Rostami G, Dolatyari M, Rostami A (2016) Continuous terahertz wave generation based on photomixers coupled to Fibonacci fractal tree antennas. Opt Quant Electron 48(12):534Google Scholar
  44. 44.
    Moreno E, Pantoja M, Bretones AR, Ruiz-Cabello M, Garcia SG (2014) A comparison of the performance of THz photoconductive antennas. IEEE Antennas Wirel Propag Lett 13:682–685Google Scholar
  45. 45.
    Khiabani N, Huang Y, Shen Y-c, Boyes S (2011) Time variant source resistance in the THz photoconductive antenna. In: 2011 Loughborough Antennas & Propagation Conference. IEEE, Piscataway, pp 1–3Google Scholar
  46. 46.
    Prajapati J, Boini VK, Bharadwaj M, Bhattacharjee R (2016) Comments on “theoretical modeling of a photoconductive antenna in a terahertz pulsed system”. IEEE Trans Antennas Propag 64(6):2583–2584Google Scholar
  47. 47.
    Tani M, Matsuura S, Sakai K, Nakashima S-i (1997) Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl Opt 36(30):7853–7859PubMedGoogle Scholar
  48. 48.
    Beard MC, Turner GM, Schmuttenmaer CA (2001) Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. J Appl Phys 90(12):5915–5923Google Scholar
  49. 49.
    Malhotra I, Jha KR, Singh G (2017) Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications. Opt Commun 397:129–139Google Scholar
  50. 50.
    Tani M, Yamamoto K, Estacio ES, Que CT, Nakajima H, Hibi M, Miyamaru F, Nishizawa S, Hangyo M (2012) Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices. J. Infrared Millim Terahertz Waves 33(4):393–404Google Scholar
  51. 51.
    Hanson GW (2013) Erratum: “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene”[J. Appl. Phys. 103, 064302 (2008)]. J Appl Phys 113(2):029902Google Scholar
  52. 52.
    Koohi MZ, Neshat M (2015) Evaluation of graphene-based terahertz photoconductive antennas. Nanotechnology 22(3):1299Google Scholar
  53. 53.
    Luo X, Qiu T, Lu W, Ni Z (2013) Plasmons in graphene: recent progress and applications. Mater Sci Eng R Rep 74(11):351–376Google Scholar
  54. 54.
    McMichael IT, Lundberg ET, Hanna DL, Kolak FS (2017) A horizon ring nulling shorted annular patch antenna with shunted stubs. PIER M 62:131–141Google Scholar
  55. 55.
    Nakamura T, Fushimi H, Yokokawa S (1990) V dipole antenna with multiple stub loading. Electronics and Communications in Japan (Part I: Communications) 73(9):97–106Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics Engineering, MIT CampusAnna UniversityChennaiIndia

Personalised recommendations