, Volume 14, Issue 6, pp 1939–1947 | Cite as

Subwavelength Electro-Optical Half-Subtractor and Half-Adder Based on Graphene Plasmonic Waveguides

  • Mir Hamid Rezaei
  • Abbas ZarifkarEmail author


In this paper, we present subwavelength half-subtractor and half-adder circuits based on graphene plasmonic waveguides. Surface plasmon polaritons are stimulated by an incident TM wave with a wavelength of 13.8 μm in graphene-insulator-metal structures. Using graphene provides high confinement, low loss, and flexibility in controlling light propagation. Simulations show that the proposed half-subtractor has contrast ratios as high as 10.60 dB and 15.75 dB for difference and borrow bits, respectively. This structure calculates AB and BA, simultaneously. Also, the results indicate that the contrast ratios for sum and carry signals of the half-adder are 7.4 dB and 14.83 dB, respectively. The footprints of the half-subtractor and half-adder are 0.315 μm2 and 0.640 μm2, respectively, which denote the compact sizes of the structures. Owing to the high contrast ratio and ultra-compact size, the presented circuits are expected to be used widely in photonic combinational integrated circuits.


Computational circuits Graphene plasmonic waveguide Half-adder Half-subtractor Surface plasmon polariton 



  1. 1.
    Davis TJ, Gómez DE, Roberts A (2017) Plasmonic circuits for manipulating optical information. Nanophotonics 6:543–559Google Scholar
  2. 2.
    Athale R, Psaltis D (2016) Optical computing: past and future. Opt Photon News 27:32–39CrossRefGoogle Scholar
  3. 3.
    Wei H, Wang Z, Tian X, Käll M, Xu H (2011) Cascaded logic gates in nanophotonic plasmon networks. Nat Commun 2:387CrossRefGoogle Scholar
  4. 4.
    Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C (2015) Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 23:31755–31765CrossRefGoogle Scholar
  5. 5.
    Hardy J, Shamir J (2007) Optics inspired logic architecture. Opt Express 15:150–165CrossRefGoogle Scholar
  6. 6.
    Cutrona L, Leith E, Palermo C, Porcello L (1960) Optical data processing and filtering systems. IRE Trans Inf Theory 6:386–400CrossRefGoogle Scholar
  7. 7.
    Ambs P (2010) Optical computing: a 60-year adventure. Adv Opt Technol 2010:1–15CrossRefGoogle Scholar
  8. 8.
    Gayen DK, Bhattachryya A, Chattopadhyay T, Roy JN (2012) Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. J Lightwave Technol 30:3387–3393CrossRefGoogle Scholar
  9. 9.
    Ota M, Sumimura A, Fukuhara M, Ishii Y, Fukuda M (2016) Plasmonic-multimode-interference-based logic circuit with simple phase adjustment. Sci Rep 6:24546CrossRefGoogle Scholar
  10. 10.
    Cohen M, Zalevsky Z, Shavit R (2013) Towards integrated nanoplasmonic logic circuitry. Nanoscale 5:5442–5449CrossRefGoogle Scholar
  11. 11.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business MediaGoogle Scholar
  12. 12.
    Szunerits S, Boukherroub R (2015) Introduction to plasmonics: advances and applications. Pan StanfordGoogle Scholar
  13. 13.
    Kumar S, Singh L, Raghuwanshi SK (2017) Design of plasmonic half-adder and half-subtractor circuits employing nonlinear effect in Mach–Zehnder interferometer. J Comput Electron 16:139–147CrossRefGoogle Scholar
  14. 14.
    Luo X, Qiu T, Lu W, Ni Z (2013) Plasmons in graphene: recent progress and applications. Mater Sci Eng R: Rep 74:351–376CrossRefGoogle Scholar
  15. 15.
    Vlădescu E, Dragoman D (2018) Reconfigurable plasmonic logic gates. Plasmonics 1–7Google Scholar
  16. 16.
    Su W, Geng Z (2018) Terahertz all-optical logic gates based on a graphene nanoribbon rectangular ring resonator. IEEE Photon J 10:1–8Google Scholar
  17. 17.
    Rezaei MH, Zarifkar A (2018) Dielectric-loaded graphene-based plasmonic multilogic gate using a multimode interference splitter. Appl Opt 57:10109–10116CrossRefGoogle Scholar
  18. 18.
    Kashani SAS, Alidash HK, Miryala S (2017) Design and characterization of graphene nano-ribbon based D-flip-flop. J Nanoelectron Optoelectron 12:580–591CrossRefGoogle Scholar
  19. 19.
    Wang A, Hu X, Zhu L, Zeng M, Fu L, Wang J (2015) Experimental demonstration on two-input optical high-base hybrid doubling and subtraction functions in graphene. Opt Express 23:31728–31735CrossRefGoogle Scholar
  20. 20.
    Hu X, Wang A, Zeng M, Long Y, Zhu L, Fu L, Wang J (2016) Graphene-assisted multiple-input high-base optical computing. Sci Rep 6:32911CrossRefGoogle Scholar
  21. 21.
    Dai B, Shimizu S, Wang X, Wada N (2013) Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers. IEEE Photon Technol Lett 25:91–93CrossRefGoogle Scholar
  22. 22.
    Singh K, Kaur G, Singh ML (2018) A simultaneous all-optical half/full-subtraction strategy using cascaded highly nonlinear fibers. J Mod Opt 65:465–479CrossRefGoogle Scholar
  23. 23.
    Ying Z, Dhar S, Zhao Z, Feng C, Mital R, Chung C-J, Pan DZ, Soref RA, Chen RT (2018) Electro-optic ripple-carry adder in integrated silicon photonics for optical computing. IEEE J Sel Top Quantum Electron 24:1–10CrossRefGoogle Scholar
  24. 24.
    McGeehan JE, Kumar S, Willner AE (2007) Simultaneous optical digital half-subtraction and-addition using SOAs and a PPLN waveguide. Opt Express 15:5543–5549CrossRefGoogle Scholar
  25. 25.
    Lin S, Ishikawa Y, Wada K (2012) Demonstration of optical computing logics based on binary decision diagram. Opt Express 20:1378–1384CrossRefGoogle Scholar
  26. 26.
    Ye X, Ye P, Zhang M (2006) All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer. Opt Fiber Technol 12:312–316CrossRefGoogle Scholar
  27. 27.
    Hong W, Huang D, Zhu G (2004) Switching window of an SOA-loop-mirror with SOA sped-up by a CW assist light at transparency wavelength. Opt Commun 238:151–156CrossRefGoogle Scholar
  28. 28.
    Kaur S, Kaler R-S, Kamal T-S (2015) All-optical binary full adder using logic operations based on the nonlinear properties of a semiconductor optical amplifier. J Opt Soc Kor 19:222–227CrossRefGoogle Scholar
  29. 29.
    Ng T, Pérez A, Sales S, Richardson D, Petropoulos P (2007) Characterization of XGM and XPM in a SOA-MZI using a Linear Frequency Resolved Gating Technique. In: Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE. IEEE, pp. 656–657Google Scholar
  30. 30.
    Baveja PP, Xiao Y, Arora S, Agrawal GP, Maywar DN (2013) All-optical semiconductor optical amplifier-based wavelength converters with sub-mW pumping. IEEE Photon Technol Lett 25:78–80CrossRefGoogle Scholar
  31. 31.
    Ooi KJ, Chu HS, Bai P, Ang LK (2014) Electro-optical graphene plasmonic logic gates. Opt Lett 39:1629–1632CrossRefGoogle Scholar
  32. 32.
    Fei Z, Rodin A, Andreev G, Bao W, McLeod A, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:82–85CrossRefGoogle Scholar
  33. 33.
    Koppens FH, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett 11:3370–3377CrossRefGoogle Scholar
  34. 34.
    Qiu P, Qiu W, Lin Z, Chen H, Tang Y, Wang J-X, Kan Q, Pan J-Q (2016) Investigation of the band structure of graphene-based plasmonic photonic crystals. Nanomaterials 6:166CrossRefGoogle Scholar
  35. 35.
    Rezaei MH, Zarifkar A, Miri M (2018) Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio. Opt Mater 84:572–578CrossRefGoogle Scholar
  36. 36.
    Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67CrossRefGoogle Scholar
  37. 37.
    Rezaei MH, Zarifkar A (2018) Transmission Characteristics of a Graphene-Based Plasmonic Decoder for THz Applications. In: 2018 9th International Symposium on Telecommunications (IST). IEEE, pp. 320–323Google Scholar
  38. 38.
    Wu X, Tian J, Yang R (2017) A type of all-optical logic gate based on graphene surface plasmon polaritons. Opt Commun 403:185–192CrossRefGoogle Scholar
  39. 39.
    Zhu X, Yan W, Mortensen NA, Xiao S (2013) Bends and splitters in graphene nanoribbon waveguides. Opt Express 21:3486–3491CrossRefGoogle Scholar
  40. 40.
    Bai J, Duan X, Huang Y (2009) Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett 9:2083–2087CrossRefGoogle Scholar
  41. 41.
    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRefGoogle Scholar
  42. 42.
    Simonov KA, Vinogradov NA, Vinogradov AS, Generalov AV, Zagrebina EM, Mårtensson N, Cafolla AA, Carpy T, Cunniffe JP, Preobrajenski AB (2014) Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: combined core-level spectroscopy and STM study. J Phys Chem C 118:12532–12540CrossRefGoogle Scholar
  43. 43.
    Zahir E, Rahman MM, Ullah K, (2017) Design and simulation of 30 Gbps optical half-adder and half-subtractor using highly nonlinear fibers. In: Humanitarian Technology Conference (R10-HTC), 2017 IEEE Region 10. IEEE, pp. 449–452Google Scholar
  44. 44.
    Parandin F, Malmir M-R, Naseri M (2017) All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals. Superlattice Microst 109:437–441CrossRefGoogle Scholar
  45. 45.
    Wu X, Deng L, Meng Y, Yang J, Tian Y (2017) Demonstration of a silicon photonic circuit for half-add operations using cascaded microring resonators. IEEE Photon J 9:1–9Google Scholar
  46. 46.
    Karkhanehchi MM, Parandin F, Zahedi A (2017) Design of an all optical half-adder based on 2D photonic crystals. Photon Netw Commun 33:159–165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Communications and Electronics, School of Electrical and Computer EngineeringShiraz UniversityShirazIran

Personalised recommendations