, Volume 14, Issue 6, pp 1863–1870 | Cite as

Temperature Sensor of MoS2 Based on Hybrid Plasmonic Waveguides

  • Jun ZhuEmail author
  • Ge Wang
  • Frank JiangEmail author
  • Yunbai QinEmail author
  • Hu Cong


In order to overcome the challenge of traditional sensors, including large size, complex preparation process, and difficult filling and sensing media, a long-range dielectric-loaded hybrid plasmonic waveguide (LRDLHPW) based on MoS2 is proposed and numerically studied. The propagation length is as high as 4.85 cm, and the corresponding mode width is 981 nm. A near-infrared plasmonic sensor based on the hybrid plasmonic waveguide-nanocavity system achieves a refractive index sensitivity of 787.5 nm/RIU and line width and figure of merit of 30 nm and 26.3, respectively; at the same time, the temperature sensitivity is as high as 2.775 nm/ ° C. Compared with other researches, the sensor proposed in this paper improves the adaptability and sensitivity of the device, and the ultracompact structure combined with the planar waveguide structure makes it easy to integrate to chip. In addition, the device can also be used as an adjustable surface plasmon polaritons band-pass filter. Note that increasing sensitivity is accompanied by decreasing resolution, and vice versa. The trade-off between sensitivity and resolution is important in order to achieve a larger figure of merit. In general, the structure designed by us achieves good optical and sensing characteristics and is widely used in nanophotonic circuits, environmental monitoring, and even drug research.


Surface plasmon resonances (SPRs) Optical sensing and sensors Nanophotonic circuits Nanostructures 


Funding Information

This work was financially supported by the Guangxi Natural Science Foundation (2017GXNSFAA198261), National Natural Science Foundation of China (Grant No. 61762018), Guangxi Youth Talent Program (F-KA16016), Innovation Project of Guangxi Graduate Education(YCSW2019074), Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ19207), and “One Thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program” of Guangxi.


  1. 1.
    Min Q, Chen C, Berini P et al (2010) Long range surface plasmons on asymmetric suspended thin film structures for biosensing application [J]. Opt Express 18(18):19009–19019CrossRefGoogle Scholar
  2. 2.
    Mansuripur M, Zakharian AR, Lesuffleur A et al (2009) Plasmonic nano-structures for optical data storage [J]. Opt Express 17(16):14001–14014CrossRefGoogle Scholar
  3. 3.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices [J]. Nat Mater 9(3):205–213CrossRefGoogle Scholar
  4. 4.
    Bozhevolnyi, SI (2008) Plasmonic nanoguides and circuits [M]. Pan StanfordGoogle Scholar
  5. 5.
    Berini P (2000) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures [J]. Phys Rev B 611(15):10484–10503CrossRefGoogle Scholar
  6. 6.
    Berini P (1999) Plasmon polariton modes guided by a metal film of finite width [J]. Opt Lett 24(15):1011–1013CrossRefGoogle Scholar
  7. 7.
    H L, Liu X, Mao D et al (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators [J]. Opt Express 18(17):17922–17927CrossRefGoogle Scholar
  8. 8.
    Chen P, Liang R, Huang Q et al (2011) Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure [J]. Opt Express 19(8):7633–7639CrossRefGoogle Scholar
  9. 9.
    Lv H, Liu Y, Yu Z et al (2014) Hybrid plasmonic waveguides for low-threshold nanolaser applications[J]. Chin Opt Lett 12(11):103–106Google Scholar
  10. 10.
    Wang J, Guan X, He Y et al (2011) Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides [J]. Opt Express 19(2):838–847CrossRefGoogle Scholar
  11. 11.
    Liu Y, Kim J (2011) Plasmonic modulation and switching via combined utilization of young interference and metal–insulator–metal waveguide coupling [J]. J Opt Soc Am B 28(11):2712–2717CrossRefGoogle Scholar
  12. 12.
    Zafar R, Salim M (2015) Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor [J]. IEEE Sensors J 15(11):6313–6317CrossRefGoogle Scholar
  13. 13.
    J Tao QJ, Wang XG (2008) Huang. All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material [J]. Plasmonics, 2011, 6(4):753–9.S Nishiuma, Y Handa, T Imamura, et al. Localized surface plasmon resonant metal nanostructures as refractive index sensors [J]. Jpn J Appl Phys 47(3):1828–1832CrossRefGoogle Scholar
  14. 14.
    Daniela, D, Elena, V (2018) Ring-shaped plasmonic logic gates [J]. PlasmonicsGoogle Scholar
  15. 15.
    Huang W, Wang J, J D et al (2019) Contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of MoO3-x nanodots and 3,3′-diaminobenzidine [J]. Microchim Acta 186(2)Google Scholar
  16. 16.
    Nishiuma S, Handa Y, Imamura T et al (2008) Localized surface plasmon resonant metal nanostructures as refractive index sensors [J]. Jpn J Appl Phys 47(3):1828–1832CrossRefGoogle Scholar
  17. 17.
    Roh, S, Chung, T, Lee, B (2010) Overview of plasmonic sensors and their design methods [J]. Proc SPIE, 7853.Google Scholar
  18. 18.
    Liu N, Weiss T, Mesch M et al (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Lett 10(4):1103–1107CrossRefGoogle Scholar
  19. 19.
    Jiang H, Sabarinathan J (2010) Effects of coherent interactions on the sensing characteristics of near-infrared gold nanorings [J]. J Phy Chem C 114(36):38CrossRefGoogle Scholar
  20. 20.
    Zhao MX, Yu HL, He Y (2019) A dynamic multichannel colorimetric sensor array for highly effective discrimination of ten explosives [J]. Sensors Actuators B Chem 283:329–333CrossRefGoogle Scholar
  21. 21.
    Vakil A, Engheta N (2011) Transformation optics using graphene [J]. Science 332(6035):1291–1294CrossRefGoogle Scholar
  22. 22.
    Mak KF, He K, Lee C et al (2012) Tightly bound trions in monolayer MoS2 [J]. Nat Mater 12(3):207–211CrossRefGoogle Scholar
  23. 23.
    Palacios E, Park S, Butun S et al (2017) Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna[J]. Appl Phys Lett 111(3):136805–131275CrossRefGoogle Scholar
  24. 24.
    Lee B, Park J, Han GH et al (2015) Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2, integrated with plasmonic nanoantenna array [J]. Nano Lett 15(5):3646–3653CrossRefGoogle Scholar
  25. 25.
    Holmgaard T, Gosciniakand J, Bozhevolnyi SI (2010) Long-range dielectric-loaded surface plasmon-polariton waveguides [J]. Opt Express 18(22):23009–23015CrossRefGoogle Scholar
  26. 26.
    Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides [J]. Phys Rev B 75:245405CrossRefGoogle Scholar
  27. 27.
    Wei W, Zhang X, Ren X (2014) Asymmetric hybrid plasmonic waveguides with centimeter-scale propagation length under subwavelength confinement for photonic components [J]. Nanoscale Res Lett 9(1):1–8CrossRefGoogle Scholar
  28. 28.
    QC Wang LS (2017) Propagation characteristics of dielectric-loaded graphene plasma waveguides [J]. Laser & Optoelectronics Progress 54(11):112401Google Scholar
  29. 29.
    Chen L, Liu Y, Z Y et al (2016) Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity[J]. Opt Express 24(9):9975–9983CrossRefGoogle Scholar
  30. 30.
    TS W, YM Liu ZYY et al (2015) A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity [J]. Opt Commun 339:1–6CrossRefGoogle Scholar
  31. 31.
    Caballero, B, Garcíamartín, A, Cuevas, JC (2016) Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors [J]. Acs Photonics 3(2).CrossRefGoogle Scholar
  32. 32.
    Wang, Y, Gao, B, Zhang, K, et al. (2017) Refractive index sensor based on leaky resonant scattering of single semiconductor nanowire[J]. Acs Photonics, 4(3).CrossRefGoogle Scholar
  33. 33.
    Bochenkov VE, Frederiksen M, Sutherland DS (2013) Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films J. Opt Express 21(12):14763–14770CrossRefGoogle Scholar
  34. 34.
    Li Z, Wang Y, Liao C et al (2014) Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer[J]. Sensors Actuators B Chem 199(4):31–35CrossRefGoogle Scholar
  35. 35.
    Wu TS, Liu YM, Yu ZY et al (2014) The sensing characteristics of plasmonic waveguide with a single defect [J]. Opt Commun 323(323):44–48CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronic EngineeringGuangxi Normal UniversityGuilinChina
  2. 2.Guangxi Key Laboratory of Automatic Detecting Technology and InstrumentsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations