Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1929–1937 | Cite as

Realization of Epsilon-Near-Zero Metamaterial Stack Based on Dielectric-Semiconductor-Metal Multilayers

  • Mina Vafaei
  • Mahmood MoradiEmail author
  • Gholam Hossein Bordbar
Article
  • 152 Downloads

Abstract

The epsilon-near-zero (ENZ) metamaterials are designed theoretically based on multilayer nanostructure stack with three sublayers (in each period) in the visible range for transverse magnetic mode at normal and transverse electric mode at oblique incident lights. The sublayers can be either metal, dielectric, or semiconductor materials. The effective permittivities of the multilayer metamaterial stacks are derived based on the optical nonlocality analysis that expand via the Bloch theory and transfer matrix method. Multilayer metamaterials based on dielectric-semiconductor-metal (DSM) including Al2O3 − Ge − Ag triple layers are considered to study their unique optical properties and determine the ENZ wavelengths at visible frequencies. Furthermore, the propagation properties of terahertz (THz) waves passing through the DSM multilayer stacks have been theoretically investigated by calculating transmission, reflection, and absorption spectra at different angles of incidence. The electric field distribution and absorption results show that the optical loss can be reduced and kept under control in multilayer metamaterial stacks. The result of reflection and transmission indicate that the DSM multilayer stacks can be introduced as a band-pass filter, and various conditions are considered for optimal filtering. In addition, it is shown that the number of depth in reflection spectra (peak in transmission spectra) increases by increasing the number of triple layers in the structures which perfectly matches with the frequencies that satisfy the Bragg’s law. All analytical results are in good agreement with the results obtained from numerical simulations.

Keywords

Epsilon-near-zero metamaterials Effective permittivities Nonlocality Band-pass filter 

Notes

References

  1. 1.
    Cai W, Shalaev V, Paul DK (2010) Optical metamaterials: fundamentals and applications. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Silveirinha MG, Al’u A, Edwards B, Engheta N (2008) Overview of theory and applications of epsilon-near-zero materials. URSI General Assembly, Chicago, ILGoogle Scholar
  3. 3.
    Maas R, Parsons J, Engheta N, Polman A (2013) Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat Photonics 7:907–912CrossRefGoogle Scholar
  4. 4.
    Du Y, Wei W, Zhang X, Li Y (2018) Tuning metamaterials nanostructure of Janus gold nanoparticle film for surface-enhanced Raman scattering. J Phys Chem C 122(14):7997–8002CrossRefGoogle Scholar
  5. 5.
    Tumkur T, Barnakov Y, Kee ST, Noginov MA, Liberman V (2015) Permittivity evaluation of multilayered hyperbolic metamaterials: ellipsometry vs. reflectometry. Appl Phys 117:103104CrossRefGoogle Scholar
  6. 6.
    Menon L, Lu WT, Friedman AL, Bennett SP, Heiman D, Sridhar S (2008) Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications. Appl Phys Lett 93:123117CrossRefGoogle Scholar
  7. 7.
    Sun L, Yang XD, Wang W, Gao J (2015) Diffraction-free optical beam propagation with near-zero phase variation in extremely anisotropic metamaterials. Opt. 17(3):035101Google Scholar
  8. 8.
    Sun L, Gao J, Yang X (2016) Optical nonlocality induced Zitterbewegung near the Dirac point in metal-dielectric multilayer metamaterials. Opt Express 24:7055–7062CrossRefGoogle Scholar
  9. 9.
    Zhang X, Zhao Z, Liu L, Li Y (2019) Design of gold nanorods Janus membrane for efficient and high-sensitive surface-enhanced Raman scattering and tunable surface plasmon resonance. Chem Phys Lett 721:117–122CrossRefGoogle Scholar
  10. 10.
    Gao J, Sun L, Deng H, Mathai CJ, Gangopadhyay S, Yang X (2013) Experimental realization of epsilon near-zero metamaterial slabs with metal-dielectric multilayers. Appl Phys Lett 103(5):051111CrossRefGoogle Scholar
  11. 11.
    Sun L, Cheng F, Mathai CJ, Gangopadhyay S, Gao J, Yang X (2014) Experimental characterization of optical nonlocality in metal-dielectric multilayer metamaterials. Opt Express 22:22974–22980CrossRefGoogle Scholar
  12. 12.
    Chui ST, Chan CT, Lin ZF (2006) Multilayer structures as negative refractive and lefthanded materials. Phys: Condens Matter 18:L89–L95Google Scholar
  13. 13.
    Zhao J, Gao J, Deng Y, Liu H, Wang X (2014) Negative refraction by a planar Ag SiO2 multilayer at ultraviolet wavelength to the limit of silver. AIP Adv 4:047127CrossRefGoogle Scholar
  14. 14.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969CrossRefGoogle Scholar
  15. 15.
    Milton GW, Nicorovici NAP, McPhedran RC, Podolskiy VA (2005) A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc R Soc Math Phys Eng Sci 461(2064):3999–4034CrossRefGoogle Scholar
  16. 16.
    Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14(18):8247–8256CrossRefGoogle Scholar
  17. 17.
    Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801):977–980CrossRefGoogle Scholar
  18. 18.
    Milton GW, Nicorovici NAP (2006) On the cloaking effects associated with anomalous localized resonance. Proc R Soc Math Phys Eng Sci 462(2074):3027–3059CrossRefGoogle Scholar
  19. 19.
    Guclu C, Campione S, Capolino F (2012) Hyperbolic metamaterial as super absorber for scattered fields generated at its surface. Phys Rev B 86(20):205130CrossRefGoogle Scholar
  20. 20.
    Sreekanth KV, ElKabbash M, Alapan Y, Rashed AR, Gurkan UA, Strangi G (2016) A multiband perfect absorber based on hyperbolic metamaterials. Sci Rep 6:26272CrossRefGoogle Scholar
  21. 21.
    Erfannia H, Rostami A (2013) Group velocity reduction in multilayer metamaterial waveguide. Optik-Int J Light Electron Optics 124(12):1230–1233CrossRefGoogle Scholar
  22. 22.
    He Y, He S, Gao J, Yang X (2012) Nanoscale metamaterial optical waveguides with ultrahigh refractive indices. Optical Soc Am B 29(9):2559–2566CrossRefGoogle Scholar
  23. 23.
    Jacob Z, Smolyaninov II, Narimanov EE (2012) Broadband Purcell effect: radiative decay engineering with metamaterials. Appl Phys Lett 100(18):181105–181104CrossRefGoogle Scholar
  24. 24.
    Iorsh I, Poddubny A, Orlov A, Belov P, Kivshar YS (2011) Spontaneous emission enhancement in metal-dielectric metamaterials. Phys Lett A 376(3):185–187CrossRefGoogle Scholar
  25. 25.
    Guo Y, Cortes CL, Molesky S, Jacob Z (2012) Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl Phys Lett 101(13):131106–131105CrossRefGoogle Scholar
  26. 26.
    Biehs SA, Tschikin M, Ben-Abdallah P (2012) Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys Rev Lett 109(10):104301CrossRefGoogle Scholar
  27. 27.
    Alu A, Silveirinha MG, Salandrino A, Engheta N (2007) Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys Rev B 75:155410CrossRefGoogle Scholar
  28. 28.
    Alekseyev LV, Narimanov EE, Tumkur T, Li H, Barnakov YA, Noginov MA (2010) Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control. Appl Phys Lett 97:131107CrossRefGoogle Scholar
  29. 29.
    Sun L, Li Z, Luk TS, Yang X, Gao J (2015) Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials. Phys Rev B 91(19):195147CrossRefGoogle Scholar
  30. 30.
    Sun L, Yang X, Gao J (2016) Analysis of nonlocal effective permittivity and permeability in symmetric metal-dielectric multilayer metamaterials. Opt 18:065101Google Scholar
  31. 31.
    Sihvola A (1999) Electromagnetic mixing formulas and applications. IEE Electromagnetic Waves Series 47Google Scholar
  32. 32.
    Foss CA, Hornyak GL, Stockert JA, Martin CR (1994) Template synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape. Phys Chem 98:2963–2971CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, College of SciencesShiraz UniversityShirazIran

Personalised recommendations