Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1801–1815 | Cite as

All Ceramic-Based Metal-Free Ultra-broadband Perfect Absorber

  • Mahmut Can SoydanEmail author
  • Amir Ghobadi
  • Deniz Umut Yildirim
  • Vakur Behcet Erturk
  • Ekmel Ozbay
Article

Abstract

In this paper, we scrutinize unprecedented potential of transition metal carbides (TMCs) and nitrides (TMNs) for realization of light perfect absorption in an ultra-broad frequency range encompassing all of the visible (Vis) and near infrared (NIR) regions. For this purpose, two different configurations which are planar and trapezoidal array are employed. To gain insight on the condition for light perfect absorption, a systematic modeling approach based on transfer matrix method (TMM) is firstly utilized. Our modeling findings prove that the permittivity data of these TMCs and TMNs are closely matched with the ideal data. Thus, they can have stronger and broader absorption behavior compared to metals. Besides, these ceramic materials are preferred to metals due to the fact that they have better thermal properties and higher durability against erosion and oxidation than metals. This could provide the opportunity for design of highly efficient light harvesting systems with long-term stability. Numerical simulations are conducted to optimize the device optical performance for each of the proposed carbides and nitrides. Our findings reveal that these ceramic coatings have the broadest absorption response compared to all lossy and plasmonic metals. In planar configuration, titanium carbide (TiC) has the largest absorption bandwidth (BW) where an absorption above 0.9 is retained over a broad wavelength range of 405–1495 nm. In trapezoid architecture, vanadium nitride (VN) shows the widest BW covering a range from 300 to 2500 nm. The results of this study can serve as a beacon for the design of future high-performance energy conversion devices including solar vapor generation and thermal photovoltaics where both optical and thermal requirements can be satisfied.

Keywords

Metamaterials Broadband perfect absorber Metal-free Transition metal nitrides Transition metal carbides 

Notes

Authors’ Contributions

First Author (M.C.S.) carried out the modeling, design, and simulations. A.G. assisted in the modeling and design and D.U.Y. assisted in theoretical review and simulations. E.O. and V.B.E. supervised the study. All the authors contributed in the results, discussions, and paper writing.

Funding

Authors reveived financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) and DPT-HAMIT under the Project nos. 113E331, 114E374, and 115F560. One of the authors (E.O.) also received partial financial support from the Turkish Academy of Sciences (TUBA)

References

  1. 1.
  2. 2.
    Li Y, Su L, Shou C, Yu C, Deng J, Fang Y (2013) Sci Rep 3.  https://doi.org/10.1038/srep02865
  3. 3.
  4. 4.
    Wu C, Neuner B, John J, Milder A, Zollars B, Savoy S, Shvets G (2012) J Opt 14(2).  https://doi.org/10.1088/2040-8978/14/2/024005 CrossRefGoogle Scholar
  5. 5.
    Li W, Valentine J (2014) . Nano Lett 14(6):3510.  https://doi.org/10.1021/nl501090w CrossRefGoogle Scholar
  6. 6.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) . Nano Lett 10(7):2342.  https://doi.org/10.1021/nl9041033 CrossRefGoogle Scholar
  7. 7.
    Ding F, Dai J, Chen Y, Zhu J, Jin Y, Bozhevolnyi SI (2016) Sci Rep 6.  https://doi.org/10.1038/srep39445
  8. 8.
    Hendrickson J, Guo J, Zhang B, Buchwald W, Soref R (2012) . Opt Lett 37(3):371.  https://doi.org/10.1364/OL.37.000371. https://www.osapublishing.org/abstract.cfm?URI=ol-37-3-371 CrossRefGoogle Scholar
  9. 9.
    Bouchon P, Koechlin C, Pardo F, Haïdar R., Pelouard JL (2012) . Opt Lett 37(6):1038.  https://doi.org/10.1364/OL.37.001038. https://www.osapublishing.org/abstract.cfm?URI=ol-37-6-1038 CrossRefGoogle Scholar
  10. 10.
    Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) Appl Phys Lett 96(25).  https://doi.org/10.1063/1.3442904 CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    Ghobadi A, Hajian H, Butun B, Ozbay E (2018) Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers.  https://doi.org/10.1021/acsphotonics.8b00872 CrossRefGoogle Scholar
  15. 15.
    Ghobadi A, Hajian H, Gokbayrak M, Abedini Dereshgi S, Toprak A, Butun B, Ozbay E (2017) . Opt Express 25(22):20256.  https://doi.org/10.1364/OE.25.027624 CrossRefGoogle Scholar
  16. 16.
    Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Nat Commun 2(1).  https://doi.org/10.1038/ncomms1528
  17. 17.
    Wang J, Chen Y, Hao J, Yan M, Qiu M (2011) J Appl Phys 109.  https://doi.org/10.1063/1.3573495 CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Zhang Y, Zhou L, Li JQ, Wang QJ, Huang CP (2015) Sci Rep 5.  https://doi.org/10.1038/srep10119
  20. 20.
  21. 21.
    Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI (2012) . Opt Express 20(12):13311.  https://doi.org/10.1364/OE.20.013311. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-12-13311 CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Shen S, Qiao W, Ye Y, Zhou Y, Chen L (2015) . Opt Express 23 (2):963.  https://doi.org/10.1364/OE.23.000963 CrossRefPubMedGoogle Scholar
  24. 24.
    Mattiucci N, Bloemer MJ, Aközbek N, D’aguanno G (2013) Sci Rep 3.  https://doi.org/10.1038/srep03203
  25. 25.
    Ghobadi A, Hajian H, Dereshgi SA, Bozok B, Butun B, Ozbay E (2017) Sci Rep 7(1).  https://doi.org/10.1038/s41598-017-15312-w
  26. 26.
    Ghobadi A, Dereshgi SA, Hajian H, Bozok B, Butun B, Ozbay E (2017) Sci Rep 7(1).  https://doi.org/10.1038/s41598-017-04964-3
  27. 27.
    Abedini Dereshgi S, Ghobadi A, Hajian H, Butun B, Ozbay E (2017) Sci Rep 7(1).  https://doi.org/10.1038/s41598-017-13837-8
  28. 28.
    Ghobadi A, Hajian H, Rashed AR, Butun B, Ozbay E (2018) Photonics Res.  https://doi.org/10.1364/PRJ.6.000168 CrossRefGoogle Scholar
  29. 29.
    Lei JG, Ji BY, Lin JQ (2016) . Chin J Phys 54(6):940.  https://doi.org/10.1016/j.cjph.2016.09.003 CrossRefGoogle Scholar
  30. 30.
    Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) . Nano Lett 12(3):1443.  https://doi.org/10.1021/nl204118h CrossRefPubMedGoogle Scholar
  31. 31.
    Liang Q, Wang T, Lu Z, Sun Q, Fu Y, Yu W (2013) . Adv Opt Mater 1(1):43.  https://doi.org/10.1002/adom.201200009 CrossRefGoogle Scholar
  32. 32.
    Ji D, Song H, Zeng X, Hu H, Liu K, Zhang N, Gan Q (2014) Sci Rep 4.  https://doi.org/10.1038/srep04498
  33. 33.
    He S, Ding F, Mo L, Bao F (2014) . Prog Electromagn Res 147 (May):69.  https://doi.org/10.2528/PIER14040306. http://www.jpier.org/PIER/pier.php?paper=14040306 CrossRefGoogle Scholar
  34. 34.
    Ding F, Jin Y, Li B, Cheng H, Mo L, He S (2014) . Laser Photonics Rev 8(6):946.  https://doi.org/10.1002/lpor.201400157 CrossRefGoogle Scholar
  35. 35.
    Zhong YK, Fu SM, Ju NP, Tu MH, Chen BR, Lin A (2016), IEEE Photon J 8(1).  https://doi.org/10.1109/JPHOT.2015.2507368 CrossRefGoogle Scholar
  36. 36.
    Wang J, Zhang W, Zhu M, Yi K, Shao J (2015) . Plasmonics 10 (6):1473.  https://doi.org/10.1007/s11468-015-9962-x CrossRefGoogle Scholar
  37. 37.
    Naik GV, Schroeder JL, Sands TD, Boltasseva A (2010) . Opt Mater Express 2(4):478.  https://doi.org/10.1364/OME.2.000478 CrossRefGoogle Scholar
  38. 38.
    Cortie MB, Giddings J, Dowd A (2010) Nanotechnology 21(11).  https://doi.org/10.1088/0957-4484/21/11/115201 CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Li W, Guler U, Kinsey N, Naik GV, Boltasseva A, Guan J, Shalaev VM, Kildishev AV (2014) . Adv Mater 26(47):7959.  https://doi.org/10.1002/adma.201401874 CrossRefPubMedGoogle Scholar
  41. 41.
    Chen F, Li Q, Li M, Long H, Yao Y, Sun P, Zhang J (2016) 16th international conference on numerical simulation of optoelectronic devices. In: NUSOD, vol 2016, pp 111–112.  https://doi.org/10.1109/NUSOD.2016.7547055
  42. 42.
  43. 43.
    Chaudhuri K, Alhabeb M, Wang Z, Shalaev VM, Gogotsi Y, Boltasseva A (2018) . ACS Photon 5(3):1115.  https://doi.org/10.1021/acsphotonics.7b01439 CrossRefGoogle Scholar
  44. 44.
    Alhabeb M, Maleski K, Mathis TS, Sarycheva A, Hatter CB, Uzun S, Levitt A, Gogotsi Y (2018) . Angew Chem Int Ed 57(19):5444.  https://doi.org/10.1002/anie.201802232 CrossRefGoogle Scholar
  45. 45.
    Hantanasirisakul K, Gogotsi Y (2018) . Adv Mater 1804779: 1804779.  https://doi.org/10.1002/adma.201804779. http://doi.wiley.com/10.1002/adma.201804779 CrossRefGoogle Scholar
  46. 46.
    Chaudhuri K, Shaltout A, Shah D, Guler U, Dutta A, Shalaev VM, Boltasseva A (2018) ACS Photonics p. acsphotonics.8b00943.  https://doi.org/10.1021/acsphotonics.8b00943. http://pubs.acs.org/doi/10.1021/acsphotonics.8b00943 CrossRefGoogle Scholar
  47. 47.
    Wang Z, Shah D, Chaudhuri K, Catellani A, Alhabeb M, Reddy H, Meng X, Azzam SI (2018) .. In: 2018 12th international congress on artificial materials for novel wave phenomena (metamaterials), IEEE, pp 001, pp 58–60.  https://doi.org/10.1109/MetaMaterials.2018.8534052
  48. 48.
    Deng H, Li Z, Stan L, Rosenmann D, Czaplewski D, Gao J, Yang X (2015) . Opt Lett 40 (11):2592.  https://doi.org/10.1364/OL.40.002592. https://www.osapublishing.org/abstract.cfm?URI=ol-40-11-2592 CrossRefGoogle Scholar
  49. 49.
    Pflüger J, Fink J, Weber W, Bohnen KP, Crecelius G (1984) . Phys Rev B 30(3):1155.  https://doi.org/10.1103/PhysRevB.30.1155 CrossRefGoogle Scholar
  50. 50.
    Pflüger J, Fink J (1997) In: Handbook of optical constants of solids.  https://doi.org/10.1016/B978-012544415-6.50055-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NANOTAM-Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
  2. 2.Department of Electrical and Electronics EngineeringBilkent UniversityAnkaraTurkey
  3. 3.Department of PhysicsBilkent UniversityAnkaraTurkey
  4. 4.UNAM-Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey

Personalised recommendations