Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1823–1830 | Cite as

Metal Nanowire Assisted Hollow Core Fiber Sensor for an Efficient Detection of Small Refractive Index Change of Measurand Liquid

  • A. K. PathakEmail author
  • S. Ghosh
  • R. K. Gangwar
  • B. M. A. Rahman
  • V. K. Singh
Article

Abstract

In this article, a cost-effective hollow core fiber (HCF)-based refractive index (RI) sensor using surface plasmon resonance (SPR) is designed and demonstrated. The sensor consists of a metal nanowire inside an HCF along with the sensing medium of various refractive indices. SPR effect between polaritons and the guided core mode of designed HCF is exploited to enhance the sensing performance. A full vectorial finite element method (FEM) is used for the design and analyses of the sensing probes which exhibit very high sensitivities of 12,400 nm/RIU, 10560 nm/RIU, and 6400 nm/RIU for copper (Cu), gold (Au), and silver (Ag), respectively with a resolution of 1.61 × 10−6 RIU. Additionally, the influence of metal wire dimension is also investigated in this paper. The reported simple and low-cost sensor exhibits high sensitivity for liquid with refractive indices slightly higher than that of the dielectric tube, such as olive oil, turpentine, kerosene, chloroform, carbon tetrachloride, glycerol, and toluene.

Keywords

Hollow core fiber Refractive index sensor Surface plasmon resonance Nanowire Sensitivity 

Notes

Acknowledgments

This work is supported in part by City, University of London, under exchange fellowship program conducted by EM Leaders. Authors are also thankful to IIT(ISM), Dhanbad Jharkhand to provide research facility.

References

  1. 1.
    Gangwar RK, Singh VK (2015) Refractive index sensor based on selectively liquid infiltrated dual core photonic crystal fibers. Photonics Nanostruct Fundam Appl 15:46–52CrossRefGoogle Scholar
  2. 2.
    Miao Y, Liu B, Zhao Q (2009) Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating. Opt Fiber Technol 15(3):233–236CrossRefGoogle Scholar
  3. 3.
    Chen C, Yang R, Zhang X, Wei W, Guo Q, Zhang X, Qin L, Ning Y, Yu Y (2018) Compact refractive index sensor based on an S-tapered fiber probe. Opt Mater Express 8(4):919–925CrossRefGoogle Scholar
  4. 4.
    Lu P, Harris J, Wang X, Lin G, Chen L, Bao X (2012) Tapered-fiber-based refractive index sensor at an air/solution interface. Appl Opt 51(30):7368–7373PubMedCrossRefGoogle Scholar
  5. 5.
    Mishra AK, Mishra SK, Gupta BD (2015) SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt Commun 344:86–91CrossRefGoogle Scholar
  6. 6.
    Liu Z, Yang X, Zhang Y, Zhang Y, Zhu Z, Yang X, Zhang J, Yang J, Yuan L (2018) Hollow fiber SPR sensor available for microfluidic chip. Sens Actuator B Chem 265:211–216CrossRefGoogle Scholar
  7. 7.
    Li X, Nguyen LV, Zhao Y, Ebendorff-Heidepriem H, Warren-Smith SC (2018) High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber. Sens Actuator B-Chem 269:103–109CrossRefGoogle Scholar
  8. 8.
    Liu Z, Tam H-Y, Htein L, Tse M-LV, Lu C (2017) Microstructured optical fiber sensors. J Light Technol 35(16):3425–3439CrossRefGoogle Scholar
  9. 9.
    Wang F, Sun Z, Liu C, Sun T, Chu PK (2017) A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 12(6):1847–1853CrossRefGoogle Scholar
  10. 10.
    Liu C, Su W, Wang F, Li X, Liu Q, Mu H, Sun T, Chu PK, Liu B (2018) Birefringent PCF based SPR sensor for a broad range of low refractive index detection. IEEE Photon Technol Lett 30:1471–1474CrossRefGoogle Scholar
  11. 11.
    Liu C, Yang L, Liu Q, Wang F, Sun Z, Sun T, Mu H, Chu PK (2018) Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection. Plasmonics 13(3):779–784CrossRefGoogle Scholar
  12. 12.
    Azab MY, Swillam MA, Farahat M, Heikal A, Obayya SAA (2018) Analysis of highly sensitive surface plasmon photonic crystal fiber biosensor. In: Photonic and phononic properties of engineered nanostructures VIII-SPIE, vol. 10541, pp 58Google Scholar
  13. 13.
    Lee HW, Schmidt MA, Tyagi HK, Sempere LP, St P, Russell J (2008) Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93(11):111102CrossRefGoogle Scholar
  14. 14.
    Csaki A, Jahn F, Latka I, Henkel T, Malsch D, Schneider T, Schröder K, Schuster K, Schwuchow A, Spittel R, Zopf D, Fritzsche W (2010) Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers. Small 6(22):2584–2589PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Luan N, Yao J (2016) High refractive index surface plasmon resonance sensor based on a silver wire filled hollow Fiber. IEEE Photonics J. 8(1):1–9Google Scholar
  16. 16.
    “COMSOL Multiphysics® Modeling Software.” [Online]. Available: https://www.comsol.com/. Accessed 25 Sept 2018
  17. 17.
    An G, Hao X, Li S, Yan X, Zhang X (2017) D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl Opt 56(24):6988–6992PubMedCrossRefGoogle Scholar
  18. 18.
    Dash JN, Das R, Jha R (2018) AZO coated microchannel incorporated PCF-based SPR sensor: a numerical analysis. IEEE Photon Technol Lett 30(11):1032–1035CrossRefGoogle Scholar
  19. 19.
    Yang X, Lu Y, Duan L, Liu B, Yao J (2017) Temperature sensor based on hollow fiber filled with graphene-Ag composite nanowire and liquid. Plasmonics 12(6):1805–1811CrossRefGoogle Scholar
  20. 20.
    Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rahman BMA, Davies JB (1984) Finite-element analysis of optical and microwave waveguide problems. IEEE Trans Microw Theory Tech 32(1):20–28CrossRefGoogle Scholar
  22. 22.
    Gangwar RK, Singh VK (2017) Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics 12(5):1367–1372CrossRefGoogle Scholar
  23. 23.
    Lu Y, Hao C, Wu B, Huang X, Wen W, Fu X, Yao J (2012) Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments. Sensors 12(9):12016–12025PubMedCrossRefGoogle Scholar
  24. 24.
    Jiang H, Wang E, Xie K, Hu Z (2016) Dual-core photonic crystal fiber for use in fiber filters. IEEE Photonics J 8(2):1–8Google Scholar
  25. 25.
    Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410CrossRefGoogle Scholar
  26. 26.
    Zhang W, Lian Z, Benson T, Wang X, Lou S (2018) A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt. Opt Quant Electron 50(1):29CrossRefGoogle Scholar
  27. 27.
    Chee S-S, Lee J-H (2014) Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size. J Mater Chem C 2(27):5372–5381CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. K. Pathak
    • 1
    Email author
  • S. Ghosh
    • 2
  • R. K. Gangwar
    • 3
  • B. M. A. Rahman
    • 2
  • V. K. Singh
    • 1
  1. 1.Optical Fiber LaboratoryIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.Department of School of Mathematics, Computer Science and EngineeringCity University LondonLondonUK
  3. 3.Centre for Applied Photonics, The Institute for Systems and Computer EngineeringTechnology and Science (INESC-TEC) PortoPortoPortugal

Personalised recommendations