, Volume 14, Issue 6, pp 1711–1716 | Cite as

Analytical Study of Carrier Generation Rate in Graphene Nanoscroll

  • Iraj S. AmiriEmail author
  • Hossein Mohammadi


Graphene nanoscroll introduced recently is another form of a graphene-based two-dimensional material, which is especially attractive in nanoelectronic applications. As carriers can travel ballistically or semi-ballistically, they can reach high-speed and energy if the channel length is enough. Therefore, they can collide and result in an excessive current called ionisation current. As a result, it is important to study this mechanism carefully. In this paper, we propose an analytical approach to calculate an ionisation coefficient.


Nanoscroll graphene Ionisation Drift velocity Scattering rate Lucky drift 



  1. 1.
    Schedin F et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652CrossRefGoogle Scholar
  2. 2.
    Dai H (2001) Carbon nanotubes: synthesis, structure, properties, and applications. In: Topics in applied physics. Springer, vol, 80, pp XV, 448. Google Scholar
  3. 3.
    Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73(17):2447–2449CrossRefGoogle Scholar
  4. 4.
    Ghadiry M et al (2012) Analysis of a novel full adder designed for implementing in carbon nanotube technology. J Circuits Syst Comput 21(05):1250042CrossRefGoogle Scholar
  5. 5.
    Ghadiry M, Gholami M, Lai CK, Ahmad H, Chong WY (2016) Ultra-sensitive humidity sensor based on optical properties of graphene oxide and nano-anatase TiO2. PLoS One 11(4):e0153949CrossRefGoogle Scholar
  6. 6.
    Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299(5611):1361–1361CrossRefGoogle Scholar
  7. 7.
    Khaledian M et al (2014) Carrier statistics and quantum capacitance models of graphene nanoscroll. J Nanomater 2014:101–101CrossRefGoogle Scholar
  8. 8.
    Zhao J, Yang B, Yang Z, Zhang P, Zheng Z, Ren W, Yan X (2014) Facile preparation of large-scale graphene nanoscrolls from graphene oxide sheets by cold quenching in liquid nitrogen. Carbon 79:470–477CrossRefGoogle Scholar
  9. 9.
    Zhang Z, Huang Y, Li T (2012) Buckling instability of carbon nanoscrolls. J Appl Phys 112(6):063515CrossRefGoogle Scholar
  10. 10.
    Tojo T, Fujisawa K, Muramatsu H, Hayashi T, Kim YA, Endo M, Terrones M, Dresselhaus MS (2013) Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing. RSC Adv 3(13):4161–4166CrossRefGoogle Scholar
  11. 11.
    Yan M et al (2013) Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. J Am Chem Soc 135(48):18176–18182CrossRefGoogle Scholar
  12. 12.
    Zhao J, Yang B, Zheng Z, Yang J, Yang Z, Zhang P, Ren W, Yan X (2014) Facile preparation of one-dimensional wrapping structure: graphene nanoscroll-wrapped of Fe3O4 nanoparticles and its application for lithium-ion battery. ACS Appl Mater Interfaces 6(12):9890–9896CrossRefGoogle Scholar
  13. 13.
    Li H, Wu J, Qi X, He Q, Liusman C, Lu G, Zhou X, Zhang H (2013) Graphene oxide scrolls on hydrophobic substrates fabricated by molecular combing and their application in gas sensing. Small 9(3):382–386CrossRefGoogle Scholar
  14. 14.
    Chen L et al (2016) Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Sci Rep 6:22027CrossRefGoogle Scholar
  15. 15.
    Chen L et al (2017) Defect-induced Fano resonances in corrugated plasmonic metamaterials. Adv Opt Mater 5(8):1600960CrossRefGoogle Scholar
  16. 16.
    Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5(7):487–496CrossRefGoogle Scholar
  17. 17.
    Ghadiry MH, Ahmadi M, Manaf AA (2011) A model for length of saturation velocity region in double-gate graphene nanoribbon transistors. Microelectron Reliab 51(12):2143–2146CrossRefGoogle Scholar
  18. 18.
    Ghadiry M et al (2014) An analytical approach to study breakdown mechanism in graphene nanoribbon field effect transistors. J Comput Theor Nanosci 11(2):339–343CrossRefGoogle Scholar
  19. 19.
    Ghadiry M, Manaf ABA, Nadi M, Rahmani M, Ahmadi MT (2012) Ionization coefficient of monolayer graphene nanoribbon. Microelectron Reliab 52(7):1396–1400CrossRefGoogle Scholar
  20. 20.
    Wolff P (1954) Theory of electron multiplication in silicon and germanium. Phys Rev 95(6):1415–1420CrossRefGoogle Scholar
  21. 21.
    Shockley W (1961) Problems related top-n junctions in silicon. Czechoslov J Phys 11(2):81–121CrossRefGoogle Scholar
  22. 22.
    Ridley B (1983) Lucky-drift mechanism for impact ionisation in semiconductors. J Phys C Solid State Phys 16(17):3373–3388CrossRefGoogle Scholar
  23. 23.
    Ghadiry M et al (2012) Theory of ionization mechanism in graphene nanoribbons. J Comput Theor Nanosci 9(12):2190–2192CrossRefGoogle Scholar
  24. 24.
    Ahmadi MT et al (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater 2010:12CrossRefGoogle Scholar
  25. 25.
    Khaledian M et al (2014) Carrier statistics and quantum capacitance models of graphene nanoscroll. J Nanomater 2014:101CrossRefGoogle Scholar
  26. 26.
    Khaledian M, Ismail R, Saeidmanesh M, Ghadiry M, Akbari E (2015) Sensitivity modelling of graphene nanoscroll-based NO 2 gas sensors. Plasmonics 10(5):1133–1140CrossRefGoogle Scholar
  27. 27.
    Ghadiry M, Ismail R, Saeidmanesh M, Khaledian M, Manaf A (2014) Graphene nanoribbon field-effect transistor at high bias. Nanoscale Res Lett 9(1):604CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Electrical EngineeringSarvestan Branch, Islamic Azad UniversitySarvestanIran

Personalised recommendations