Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1775–1782 | Cite as

Design of a Compact and Broadband Polarization Filter Based on a Liquid Crystal-Filled and Gold-Coated Photonic Crystal Fiber

  • Linghong JiangEmail author
  • Yiyang Zhang
  • Guoxu Zhang
  • Chao Wang
  • Xiangtao Zhao
  • Lantian Hou
  • Yuefeng Qi
Article
  • 55 Downloads

Abstract

A compact and broadband polarization-dependent filter of a simple hexagonal gold-coated PCF with liquid crystal infiltrating is proposed, and its polarization filtering properties are investigated by using the finite element method. The design of two gold-coated holes filled with liquid crystal can significantly improve the crosstalk in a 0.8–2.4-μm wavelength range, where the core-guided modal loss in the x polarization is far higher than the one in the y polarization. The confinement losses of the core modes for the x and y polarizations are 314.29 dB/cm and 0.11 dB/cm at 0.8 μm, 1439.64 dB/cm and 1.89 dB/cm at 1.31 μm, and 1124.6 dB/cm and 2.83 dB/cm at 1.55 μm, respectively. The suggested 100-μm-long single polarization filter has an ultra-broadband bandwidth of 1600 nm, from 0.8 to 2.4 μm, with high crosstalk better than 20 dB. Moreover, by adjusting the gold layer thickness between 25 and 30 nm, the bandwidth remains close to 1600 nm with a small wavelength shift, making this broadband polarization filter widely used in broadband communication systems.

Keywords

Photonic crystal fiber Surface plasmon polaritons Liquid crystal Polarization filter 

Notes

Funding Information

This work is supported by the National Natural Science Foundation of China (No. 61735011), the Natural Science Foundation of Hebei Province (No. F2018105036), Science and Technology Planning Project of Tangshan City (Nos. 17130254a and 17130257a), and the Colleges and Universities in Hebei Province Science and Technology Research Project (No.BJ2017108).

References

  1. 1.
    Russell PSJ (2006) Photonic-crystal fibers. J Lightwave Technol 24:4729–4749CrossRefGoogle Scholar
  2. 2.
    Knight JC (2003) Photonic crystal fibres. Nature 424:847–851CrossRefGoogle Scholar
  3. 3.
    Sazio PJA, Correa AA, Finlayson CE, Hayes JR, Scheidemantel TJ, Baril NF, Jackson BR, Won DJ, Zhang F, Margine ER, Gopalan V, Crespi VH, Badding JV (2006) Microstructured optical fibers as high-pressure microfluidic reactors. Science 311:1583–1586CrossRefGoogle Scholar
  4. 4.
    Tyagi HK, Lee HW, Uebel P, Schmidt MA, Joly N, Scharrer M, Russell PSJ (2010) Plasmon resonances on gold nanowires directly drawn in a step-index fiber. Opt Lett 35:2573–2575CrossRefGoogle Scholar
  5. 5.
    Hameed MFO, Obayya SSA (2011) Coupling characteristics of dual liquid crystal core soft glass photonic crystal fiber. IEEE J Quantum Electron 47:1283–1290CrossRefGoogle Scholar
  6. 6.
    Ren GB, Shum P, Yu X, Hu JJ, Wang GH, Gong YD (2008) Polarization dependent guiding in liquid crystal filled photonic crystal fibers. Opt Commun 281:1598–1606CrossRefGoogle Scholar
  7. 7.
    Tyagi HK, Schmidt MA, Prill Sempere L, Russell PSJ (2008) Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Opt Express 16:17227–17236CrossRefGoogle Scholar
  8. 8.
    Schmidt MA, Russell PSJ (2008) Long-range spiralling surface plasmon modes on metallic nanowires. Opt Express 16:13617–13623CrossRefGoogle Scholar
  9. 9.
    Lee HW, Schmidt MA, Tyagi HK, Sempere LP, Russell PSJ (2008) Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93:111102CrossRefGoogle Scholar
  10. 10.
    Chen Y, Ming H (2012) Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photon Sens 2:37–49CrossRefGoogle Scholar
  11. 11.
    Liu Q, Li SG, Li H, Zi JC, Zhang W, Fan ZK, An GW, Bao YJ (2015) Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter. Plasmonics 10:931–939CrossRefGoogle Scholar
  12. 12.
    Li MQ, Peng L, Zhou GY, Li BY, Hou ZY, Xia CM (2017) Design of photonic crystal fiber filter with narrow width and single-polarization based on surface plasmon resonance. IEEE Photon J 9:5700108Google Scholar
  13. 13.
    Li BY, Li MQ, Peng L, Zhou GY, Hou ZY, Xia CM (2017) Research on dual-wavelength single polarizing filter based on photonic crystal fiber. IEEE Photon J 9:5700209Google Scholar
  14. 14.
    Guo Y, Li JS, Li SG, Zhang SH, Liu YD (2018) Broadband single-polarization filter of d-shaped photonic crystal fiber with a micro-opening based on surface plasmon resonance. Appl Opt 57:8016–8022CrossRefGoogle Scholar
  15. 15.
    Wu JJ, Li SG, Liu Q, Shi M (2017) Photonic crystal fiber polarization filter with two large apertures coated with gold layers. Chin Phys B 26:114209–1141-7CrossRefGoogle Scholar
  16. 16.
    Wang YJ, Li SG, Chen HL, Shi M, Liu YC (2018) Ultra-wide bandwidth polarization filter based on gold-coated photonic crystal fiber around the wavelength of 1.55 mm. Opt Laser Technol 106:22–28CrossRefGoogle Scholar
  17. 17.
    Wu JJ, Li SG, Dou C, Liu Q (2018) A high extinction and wide bandwidth polarization filter based on surface plasmon resonance. Opt Quant Electron 50:16CrossRefGoogle Scholar
  18. 18.
    Wu JJ, Li SG, Jing XL, Dou C, Wang YJ (2018) Elliptical photonic crystal fiber polarization filter combined with surface plasmon resonance. IEEE Photon Technol Let 30:1368–1371CrossRefGoogle Scholar
  19. 19.
    Chen HL, Li SG, Ma MJ, Fan ZK, Wu YD (2015) Ultrabroad bandwidth polarization filter based on d-shaped photonic crystal fibers with gold film. Plasmonics 10:1239–1242CrossRefGoogle Scholar
  20. 20.
    Zhang X, Wang R, Cox FM, Kuhlmey BT, Large MCJ (2007) Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt Express 15:16270–16278CrossRefGoogle Scholar
  21. 21.
    Khaleque A, Hattori HT (2015) Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber. Appl Opt 54:2543–2549CrossRefGoogle Scholar
  22. 22.
    Kejalakshmy N, Rahman BMA, Agrawal A, Wongcharoen T, Grattan KTV (2008) Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method. Appl Phys B Lasers Opt 93:223–230CrossRefGoogle Scholar
  23. 23.
    Mahdiraji GA, Chow DM, Sandoghchi SR, Amirkhan F, Dermosesian E, Yeo KS, Kakael Z, Ghomeishi M, Poh SY, Gang SY, M. Adikan FR (2014) Challenges of solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber Integr Opt 33:85–104Google Scholar
  24. 24.
    Wang Y, Liao C R, Wang D N (2010) Femtosecond laser-assisted selective infiltration of microstructured optical fibers. Opt Express 18: 18056–18060CrossRefGoogle Scholar
  25. 25.
    Haakestad MW, Alkeskjold TT, Nielsen MD, Scolari L (2005) Electrically tunable photonic bandgap guidance in a liquid crystal-filled photonic crystal fiber. IEEE Photon Technol Lett 17:819–821CrossRefGoogle Scholar
  26. 26.
    Liu BH, Jiang YX, Zhu XC (2013) Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. Opt Express 21:32349–32357CrossRefGoogle Scholar
  27. 27.
    Agrawal GP (1989, 1989) Nonlinear fiber optics. Academic PressGoogle Scholar
  28. 28.
    Li J, Shin-Tson W, Stefano B, Riccardo M, Sandro F (2005) Infrared refractive indices of liquid crystals. J Appl Phys 97:073501–0731-5CrossRefGoogle Scholar
  29. 29.
    Alkeskjold TT, Bjarklev A (2007) Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter. Opt Lett 32:1707–1709CrossRefGoogle Scholar
  30. 30.
    Zhang ZH, Shi FY, Bian BM, Lu J (2008) Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt Express 16:1915–1922CrossRefGoogle Scholar
  31. 31.
    Hameed MFO, Obayyac SSA (2011) Design of passive polarization rotator based on silica photonic crystal fiber. Opt Lett 36:3133–3135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Linghong Jiang
    • 1
    Email author
  • Yiyang Zhang
    • 1
  • Guoxu Zhang
    • 1
  • Chao Wang
    • 1
  • Xiangtao Zhao
    • 2
  • Lantian Hou
    • 2
  • Yuefeng Qi
    • 2
  1. 1.Intelligence and Information Engineering CollegeTangshan UniversityTangshanChina
  2. 2.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina

Personalised recommendations