Advertisement

Plasmonics

pp 1–8 | Cite as

Five-Band Terahertz Perfect Absorber Based on Metal Layer–Coupled Dielectric Metamaterial

  • Yubin Zhang
  • Chunlian Cen
  • Cuiping Liang
  • Zao Yi
  • Xifang Chen
  • Yongjian Tang
  • Tao YiEmail author
  • Yougen YiEmail author
  • Wei Luo
  • Shuyuan Xiao
Article
  • 8 Downloads

Abstract

A five-band tunable ideal terahertz metamaterial absorber based on subwavelength range is proposed. It consists of a reflective layer, a dielectric layer, and an absorbing layer consisting of an internal closed square ring and an outer open square circle. We have found that the five absorption peaks can reach more than 97% on average. Meanwhile, in order to analyze the absorption mechanism, we studied the different structures and geometric parameters of the absorber and drew the electric field intensity diagram and surface current density diagram at different peaks. Moreover, we also studied the effect of similar opening structures based on this structure on absorption. Therefore, the designed absorber has good frequency selectivity and can be applied to terahertz imaging, detection, and so on.

Keywords

Metamaterial Perfect absorber Five-band absorption COMSOL 

Notes

Funding information

The work is supported by the National Natural Science Foundation of China (NNSFC) (51606158, 11604311, 61705204, 21506257, 11847132), the Sichuan Science and Technology Program (2018GZ0521), and the Longshan Academic Talent Research Supporting program of SWUST (18lzx506).

References

  1. 1.
    Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, Segev M (2018) Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361(6407):1101–1104Google Scholar
  2. 2.
    Cen CL, Chen JJ, Liang CP, Huang J, Chen XF, Tang YJ, Yi Z, Xu XB, Yi YG, Xiao SY (2018) Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays. Phys E 103:93–98Google Scholar
  3. 3.
    He ZX, Li MM, Li YH, Li CC, Yi Z, Zhu J, Dai L, Meng W, Zhou HZ, Wang L (2019) ZrO2 nanoparticle embedded carbon nanofibers by electrospinning technique as advanced negative electrode materials for vanadium redox flow battery. Electrochim Acta 309:166–176.  https://doi.org/10.1016/j.electacta.2019.04.100 Google Scholar
  4. 4.
    Yi Z, Chen JJ, Cen CL, Chen XF, Zhou ZG, Tang YJ, Ye X, Xiao SY, Luo W, Wu PH (2019) Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region. Micromachines 10:194Google Scholar
  5. 5.
    Wang XX, Zhu JK, Tong H, Yang XD, Wu XX, Pang ZY, Yang H, Qi YP (2019) A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer. Chin Phys B 28(4):044201Google Scholar
  6. 6.
    He Y, Wu QN, Yan SN (2019) Multi-band terahertz absorber at 0.1-1 THz frequency based on ultra-thin metamaterial. Plasmonics.  https://doi.org/10.1007/s11468-019-00936-7
  7. 7.
    Di L, Yang H, Xian T, Liu X, Chen X (2019) Photocatalytic and photo-Fenton catalytic degradation activities of Z-scheme Ag2S/BiFeO3 heterojunction composites under visible-light irradiation. Nanomaterials 9:399Google Scholar
  8. 8.
    Simovski CR, Belov PA, Atrashchenko AV, Kivshar YS (2012) Wire metamaterials: physics and applications. Adv Mater 24(31):4229–4248Google Scholar
  9. 9.
    Shelby RA (2001) Experimental verification of a negative index of refraction. Science 292(5514):77–79Google Scholar
  10. 10.
    Zhao XX, Yang H, Li SH, Cui ZM, Zhang CR (2018) Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity. Mater Res Bull 107:180–188Google Scholar
  11. 11.
    Wang XX, Bai XL, Pang ZY, Zhu JK, Wu Y, Yang H, Qi YP, Wen XL (2019) Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film. Opt Mater Express 9(4):1872–1881Google Scholar
  12. 12.
    Zeng Y, Chen XF, Yi Z, Yi YG, Xu XB (2018) Fabrication of p-n heterostructure ZnO/Si moth-eye structures: antireflection, enhanced charge separation and photocatalytic properties. Appl Surf Sci 441:40–48Google Scholar
  13. 13.
    Yi Z, Liu L, Wang L, Cen C, Chen X, Zhou Z, Ye X, Yi Y, Tang Y, Yi Y, Wu P (2019) Tunable dual-band perfect absorber consisting of periodic cross-cross monolayer graphene arrays. Results Phys 13:102217Google Scholar
  14. 14.
    Liu ZQ, Tang P, Liu XS, Yi Z, Liu GQ, Wang Y, Liu ML (2019) Truncated titanium/semiconductor cones for wide-band solar absorbers. Nanotechnology.  https://doi.org/10.1088/1361-6528/ab109d
  15. 15.
    Zhang QB, Liao J, Liao M, Dai JY, Ge HL, Duan T, Yao WT (2019) One-dimensional Fe7S8@C nanorods as anode materials for high-rate and long-life lithium-ion batteries. Appl Surf Sci 473:799–806Google Scholar
  16. 16.
    Xiong Z, Cao L (2019) High magnetic-dielectric tunability in Ni nanocrystals embedded BaTiO3 films. J Alloys Compd 785:200–205Google Scholar
  17. 17.
    Fu JH, Lv B, Li RJ, Ma RY, Chen W, Wang ZF (2017) Excitation of surface plasmon polaritons in an inhomogeneous graphene-covered grating. Plasmonics 12:209–213Google Scholar
  18. 18.
    Cheng SB, Xia T, Liu MS, Gao SF, Xu S, Zhang G, Tao SH (2019) Optical manipulation of microparticles with the momentum flux transverse to the optical axis. Opt Laser Technol 113:266–272Google Scholar
  19. 19.
    Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 16(10):7181Google Scholar
  20. 20.
    Wang JQ, Zhang J, Tian YZ, Fan CZ, Mu KJ, Chen S, Ding P, Liang EJ (2017) Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering. Opt Express 25(1):497–507Google Scholar
  21. 21.
    Zhang XW, Qi YP, Zhou PY, Gong HH, Hu BB, Yan CM (2018) Refractive index sensor based on Fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photonic Sens 8(4):367–374Google Scholar
  22. 22.
    Xiao W, Wang Z, Zhang Y, Fang R, Yuan Z, Miao C, Yan XM, Jiang Y (2018) Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries. J Power Sources 382:128–134Google Scholar
  23. 23.
    Huang J, Niu G, Yi Z, Chen XF, Zhou ZG, Ye X, Tang YJ, Duan T, Yi Y, Yi YG (2019) High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials. Phys Scr.  https://doi.org/10.1088/1402-4896/ab185f
  24. 24.
    Wang XX, Wu XX, Zhu JK, Pang ZY, Yang H, Qi YP (2019) Theoretical investigation of a highly sensitive refractive-index sensor based on TM0 waveguide mode resonance excited in an asymmetric metal-cladding dielectric waveguide structure. Sensors 19(5):1187Google Scholar
  25. 25.
    Zheng CX, Yang H, Cui ZM, Zhang HM, Wang XX (2017) A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res Lett 12:608Google Scholar
  26. 26.
    Xiong Z, Cao L (2019) Tailoring morphology, enhancing magnetization and photocatalytic activity via Cr doping in Bi25FeO40. J Alloys Compd 773:828–837Google Scholar
  27. 27.
    Luo X, Zhai X, Wang LL, Lin Q (2018) Enhanced dual-band absorption of molybdenum disulfide using plasmonic perfect absorber. Opt Express 26(9):11658–11666Google Scholar
  28. 28.
    Luo X, Liu ZM, Wang LL, Liu JP, Lin Q (2018) Tunable ultra-narrowband and wide-angle graphene-based perfect absorber in the optical communication region1. Appl Phys Express 1(10):105102Google Scholar
  29. 29.
    Wang JC, Yang L, Hu ZD, He WJ, Zheng GG (2019) Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory. IEEE Photon Technol Lett 31(7):561–564Google Scholar
  30. 30.
    Wang JC, Yang L, Wang M, Hu ZD, Deng QL, Nie YG, Zhang F, Sang T (2019) Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures. J Phys D Appl Phys 52(1):015101Google Scholar
  31. 31.
    Wang XX, Tong H, Pang ZY, Zhu JK, Wu XX, Yang H, Qi YP (2019) Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation. Opt Quant Electron 51:38Google Scholar
  32. 32.
    Tang J, Xiao Z, Xu K, Ma X, Wang Z (2016) Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle. Plasmonics 11(5):1393–1399Google Scholar
  33. 33.
    Chen J, Zha TQ, Zhang T, Tang CJ, Yu Y, Liu YJ, Zhang LB (2017) Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials. J Lightwave Technol 35:71–74Google Scholar
  34. 34.
    Cen CL, Lin H, Huang J, Liang CP, Chen XF, Tang YJ, Yi Z, Ye X, Liu JW, Yi YG, Xiao SY (2018) A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays. Sensors 18(12):4489Google Scholar
  35. 35.
    Yan YX, Yang H, Yi Z, Li RS, Wang XX (2019) Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with Au nanoparticles assembled on CaTiO3 nanocuboids. Micromachines 10:254Google Scholar
  36. 36.
    Wan H, Yao W, Zhu W, Tang Y, Ge H, Shi X, Duan T (2018) Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation. Appl Surf Sci 444:355–363Google Scholar
  37. 37.
    Zheng X, Xiao Z, Ling X (2017) A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics 13(1):287–291Google Scholar
  38. 38.
    Chen J, Fan WF, Mao P, Tang CJ, Liu YJ, Yu Y, Zhang LB (2017) Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing. Plasmonics 12:529–534Google Scholar
  39. 39.
    Shi XL, Ma LJ, Zhang ZD, Tang Y, Zhang YJ, Han JQ, Sun YQ (2018) Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system. Opt Commun 427:326–330BGoogle Scholar
  40. 40.
    Tang J, Xiao Z, Xu K (2016) Broadband ultrathin absorber and sensing application based on hybrid materials in infrared region. Plasmonics 12(4):1091–1098Google Scholar
  41. 41.
    Liu XS, Liu GQ, Tang P, Fu GL, Du GZ, Chen QQ, Liu ZQ (2018) Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers. Carbon 140:362–367Google Scholar
  42. 42.
    Liu C, Su WQ, Liu Q, Lu XL, Wang FM, Sun T, Paul KC (2018) Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt Express 26:9039–9049Google Scholar
  43. 43.
    Deng YH, Yang ZJ, He J (2018) Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement. Opt Express 26:31116–31128Google Scholar
  44. 44.
    Tian X, Li ZY (2017) An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide. Plasmonics 13(4):1393–1402Google Scholar
  45. 45.
    Liu G, Liu X, Chen J, Li Y, Shi L, Fu G, Liu Z (2019) Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters. Sol Energy Mater Sol Cells 190:20–29Google Scholar
  46. 46.
    Wang JQ, Liu XM, Li L, He JN, Fan CZ, Tian YZ, Ding P, Chen DX, Xue QZ, Liang EJ (2013) Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair. J Opt 15(10):105003Google Scholar
  47. 47.
    Yan YX, Yang H, Zhao XX, Li RS, Wang XX (2018) Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater Res Bull 105:286–290Google Scholar
  48. 48.
    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Jun Cui T (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101(15):154102Google Scholar
  49. 49.
    Wang BX, Zhai X, Wang GZ, Huang WQ, Wang LL (2015) Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J 7(1):1–8Google Scholar
  50. 50.
    Tang L, Liu Y, Liu G, Chen Q, Li Y, Shi L, Liu Z, Liu X (2019) A novel SERS substrate platform: spatially stacking plasmonic hotspots films. Nanoscale Res Lett 14(1):94Google Scholar
  51. 51.
    Chen XF, Cen CL, Zhou L, Cao RF, Yi Z, Tang YJ (2019) Magnetic properties and reverse magnetization process of anisotropic nanocomposite permanent magnet. J Magn Magn Mater 483:152–157Google Scholar
  52. 52.
    Gao HJ, Wang F, Wang SF, Wang XX, Yi Z, Yang H (2019) Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: synthesis and photocatalytic mechanism. Mater Res Bull 115:140–149Google Scholar
  53. 53.
    Li R, Xiao W, Miao C, Fang R, Wang ZY, Zhang MQ (2019) Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries. Ceram Int.  https://doi.org/10.1016/j.ceramint.2019.04.059
  54. 54.
    Zou TB, Hu FR, Xiao J, Zhang H, Liu F, Chen T, Niu JH, Xiong XM (2014) Design of a polarization-insensitive and broadband terahertz absorber using metamaterials. Acta Phys Sin 63(17):178103Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Joint Laboratory for Extreme Conditions Matter PropertiesSouthwest University of Science and TechnologyMianyangChina
  2. 2.Sichuan Civil-Military Integration InstituteMianyangChina
  3. 3.Research Center of Laser Fusion, China Academy of Engineering PhysicsMianyangChina
  4. 4.College of Physics and ElectronicsCentral South UniversityChangshaChina
  5. 5.The Third Xiangya HospitalCentral South UniversityChangshaChina
  6. 6.Institute for Advanced StudyNanchang UniversityNanchangChina

Personalised recommendations