Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1593–1599 | Cite as

Nanofocusing of Surface Plasmon Polaritons on Metal-Coated Fiber Tip Under Internal Excitation of Radial Vector Beam

  • Fanfan Lu
  • Wending ZhangEmail author
  • Lu Zhang
  • Min Liu
  • Tianyang Xue
  • Ligang Huang
  • Feng Gao
  • Ting MeiEmail author
Article

Abstract

We theoretically present the nanofocusing of the metal-coated fiber tip under internal excitation of the radial vector beam within visible band based on the finite difference time domain (FDTD) analysis. The electric field intensity enhancement factor of the localized surface plasmons (LSP) mode at the tip apex is quantitatively shown in relation with incident wavelength, coating material, conical angle of tip, and coating film thickness/length. Specially, the evolution of fiber radial vector mode to surface mode with respect to the radius of metal-coated fiber tip is calculated under typical excitation wavelengths of 633 nm and 785 nm. Furthermore, the reason of the tip eliminating far-field background signal is explained, and the transverse electric field distributions of LSP mode and the tip-substrate coupling are also given at the optimal excitation wavelength. These calculation results will be a good reference for the fabrication of metal-coated fiber tips and for the experimental design of the tip-enhanced spectroscopy (TES) system.

Keywords

Surface plasmon polaritons Plasmonic nanofocusing Electric field enhancement Fiber optics Finite difference time domain (FDTD) 

Notes

Funding Information

This work was financially supported by the National Natural Science Foundation of China (61675169, 61675171) and Natural Science Basic Research Plan in Shaanxi Province of China (2018JM6036, 2018KW-009).

References

  1. 1.
    Gramotnev DK, Bozhevolnyi SI (2013) Nanofocusing of electromagnetic radiation. Nat Photonics 8(1):13–22.  https://doi.org/10.1038/nphoton.2013.232 CrossRefGoogle Scholar
  2. 2.
    Lindquist NC, Nagpal P, Lesuffleur A, Norris DJ, Oh S-H (2010) Three-dimensional plasmonic nanofocusing. Nano Lett 10(4):1369–1373.  https://doi.org/10.1021/nl904294u CrossRefPubMedGoogle Scholar
  3. 3.
    Berweger S, Atkin JM, Olmon RL, Raschke MB (2012) Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J Phys Chem Lett 3(7):945–952.  https://doi.org/10.1021/jz2016268 CrossRefPubMedGoogle Scholar
  4. 4.
    Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318(1–3):131–136.  https://doi.org/10.1016/S0009-2614(99)01451-7 CrossRefGoogle Scholar
  5. 5.
    Chen C, Hayazawa N, Kawata S (2014) A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat Commun 5:3312.  https://doi.org/10.1038/ncomms4312 CrossRefPubMedGoogle Scholar
  6. 6.
    Lu FF, Huang TX, Han L, Su HS, Wang H, Liu M, Zhang WD, Wang X, Mei T (2018) Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation. Sensors 18(11):3841.  https://doi.org/10.3390/s18113841 CrossRefGoogle Scholar
  7. 7.
    Zhang WD, Li C, Gao K, Lu FF, Liu M, Li X, Zhang L, Mao D, Gao F, Huang LG, Mei T, Zhao JL (2018) Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse. Nanotechnology 29(20):205301.  https://doi.org/10.1088/1361-6528/aab294 CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498(7452):82–86.  https://doi.org/10.1038/nature12151 CrossRefPubMedGoogle Scholar
  9. 9.
    Zhong JH, Jin X, Meng LY, Wang X, Su HS, Yang ZL, Williams CT, Ren B (2017) Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat Nanotechnol 12(2):132–136.  https://doi.org/10.1038/nnano.2016.241 CrossRefPubMedGoogle Scholar
  10. 10.
    Huth F, Schnell M, Wittborn J, Ocelic N, Hillenbrand R (2011) Infrared-spectroscopic nanoimaging with a thermal source. Nat Mater 10(5):352–356.  https://doi.org/10.1038/nmat3006 CrossRefPubMedGoogle Scholar
  11. 11.
    Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6(11):737–748.  https://doi.org/10.1038/nphoton.2012.244 CrossRefGoogle Scholar
  12. 12.
    Neacsu CC, Reider GA, Raschke MB (2005) Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures. Phys Rev B 71(20):201402.  https://doi.org/10.1103/PhysRevB.71.201402 CrossRefGoogle Scholar
  13. 13.
    Kravtsov V, Ulbricht R, Atkin JM, Raschke MB (2016) Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat Nanotechnol 11(5):459–464.  https://doi.org/10.1038/nnano.2015.336 CrossRefPubMedGoogle Scholar
  14. 14.
    Deckert V (2009) Tip-enhanced Raman spectroscopy. J Raman Spectrosc 40(10):1336–1337.  https://doi.org/10.1002/jrs.2452 CrossRefGoogle Scholar
  15. 15.
    Pozzi EA, Sonntag MD, Jiang N, Chiang N, Seideman T, Hersam MC, Van Duyne RP (2014) Ultrahigh vacuum tip-enhanced Raman spectroscopy with picosecond excitation. J Phys Chem Lett 5(15):2657–2661.  https://doi.org/10.1021/jz501239z CrossRefPubMedGoogle Scholar
  16. 16.
    Stadler J, Schmid T, Zenobi R (2012) Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 4(6):1856–1870.  https://doi.org/10.1039/c1nr11143d CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang S, Zhang Y, Zhang R, Hu CR, Liao MH, Luo Y, Yang JL, Dong ZC, Hou JG (2015) Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat Nanotechnol 10(10):865–869.  https://doi.org/10.1038/nnano.2015.170 CrossRefPubMedGoogle Scholar
  18. 18.
    Yang ZL, Aizpurua J, Xu HX (2009) Electromagnetic field enhancement in TERS configurations. J Raman Spectrosc 40(10):1343–1348.  https://doi.org/10.1002/jrs.2429 CrossRefGoogle Scholar
  19. 19.
    Zhang ZL, Sheng SX, Wang RM, Sun MT (2016) Tip-enhanced Raman spectroscopy. Anal Chem 88(19):9328–9346.  https://doi.org/10.1021/acs.analchem.6b02093 CrossRefPubMedGoogle Scholar
  20. 20.
    Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J Phys Chem Lett 1(24):3427–3432.  https://doi.org/10.1021/jz101289z CrossRefGoogle Scholar
  21. 21.
    Lu FF, Zhang WD, Huang LG, Liang SH, Mao D, Gao F, Mei T, Zhao JL (2018) Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron Adv 1(6):18001001–18001007.  https://doi.org/10.29026/oea.2018.180010 CrossRefGoogle Scholar
  22. 22.
    Bouhelier A, Renger J, Beversluis M, aN L (2003) Plasmon-coupled tip-enhanced near-field optical microscopy. J Microsc 210(3):220–224.  https://doi.org/10.1046/j.1365-2818.2003.01108.x CrossRefPubMedGoogle Scholar
  23. 23.
    Janunts NA, Baghdasaryan KS, Nerkararyan KV, Hecht B (2005) Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Opt Commun 253(1–3):118–124.  https://doi.org/10.1016/j.optcom.2005.04.076 CrossRefGoogle Scholar
  24. 24.
    Ding W, Andrews SR, Maier SA (2007) Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Phys Rev A 75(6):063822.  https://doi.org/10.1103/PhysRevA.75.063822 CrossRefGoogle Scholar
  25. 25.
    Barthes J, Colas des Francs G, Bouhelier A, Dereux A (2012) A coupled lossy local-mode theory description of a plasmonic tip. New J Phys 14(8):083041.  https://doi.org/10.1088/1367-2630/14/8/083041 CrossRefGoogle Scholar
  26. 26.
    Auwarter D, Mihaljevic J, Meixner AJ, Zimmermann C, Slama S (2013) Coupling of optical far fields into apertureless plasmonic nanofiber tips. Phys Rev A 88(6):063830.  https://doi.org/10.1103/PhysRevA.88.063830 CrossRefGoogle Scholar
  27. 27.
    Tugchin BN, Janunts N, Klein AE, Steinert M, Fasold S, Diziain S, Sison M, Kley E-B, Tünnermann A, Pertsch T (2015) Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2(10):1468–1475.  https://doi.org/10.1021/acsphotonics.5b00339 CrossRefGoogle Scholar
  28. 28.
    Zhang WD, Huang LG, Wei KY, Li P, Jiang BQ, Mao D, Gao F, Mei T, Zhang GQ, Zhao JL (2016) Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt Express 24(10):10376–10384.  https://doi.org/10.1364/OE.24.010376 CrossRefPubMedGoogle Scholar
  29. 29.
    Wei KY, Zhang WD, Huang LG, Mao D, Gao F, Mei T, Zhao JL (2017) Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions. Opt Express 25(3):2733–2741.  https://doi.org/10.1364/OE.25.002733 CrossRefPubMedGoogle Scholar
  30. 30.
    West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4(6):795–808.  https://doi.org/10.1002/lpor.200900055 CrossRefGoogle Scholar
  31. 31.
    Lide DR (1989) Handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Press, Boca RatonGoogle Scholar
  32. 32.
    Meng LY, Sun MT, Chen JN, Yang ZL (2016) A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy. Sci Rep 6:19558.  https://doi.org/10.1038/srep19558 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ploss D, Kriesch A, Pfeifer H, Banzer P, Peschel U (2014) Generation and subwavelength focusing of longitudinal magnetic fields in a metallized fiber tip. Opt Express 22(11):13744–13754.  https://doi.org/10.1364/OE.22.013744 CrossRefPubMedGoogle Scholar
  34. 34.
    Olmon RL, Slovick B, Johnson TW, Shelton D, Oh S-H, Boreman GD, Raschke MB (2012) Optical dielectric function of gold. Phys Rev B 86 (23).  https://doi.org/10.1103/PhysRevB.86.235147
  35. 35.
    Meng LY, Huang TX, Wang X, Chen S, Yang ZL, Ren B (2015) Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration. Opt Express 23(11):13804–13813.  https://doi.org/10.1364/oe.23.013804 CrossRefPubMedGoogle Scholar
  36. 36.
    Stadler J, Oswald B, Schmid T, Zenobi R (2013) Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy. J Raman Spectrosc 44(2):227–233.  https://doi.org/10.1002/jrs.4169 CrossRefGoogle Scholar
  37. 37.
    Rendell RW, Scalapino DJ (1981) Surface plasmons confined by microstructures on tunnel junctions. Phys Rev B 24(6):3276–3294.  https://doi.org/10.1103/PhysRevB.24.3276 CrossRefGoogle Scholar
  38. 38.
    Mock JJ, Hill RT, Tsai YJ, Chilkoti A, Smith DR (2012) Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. Nano Lett 12(4):1757–1764.  https://doi.org/10.1021/nl204596h CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lumdee C, Yun B, Kik PG (2014) Gap-plasmon enhanced gold nanoparticle photoluminescence. ACS Photonics 1(11):1224–1230.  https://doi.org/10.1021/ph500304v CrossRefGoogle Scholar
  40. 40.
    Kalathingal V, Dawson P, Mitra J (2016) Scanning tunneling microscope light emission: effect of the strong dc field on junction plasmons. Phys Rev B 94 (3).  https://doi.org/10.1103/PhysRevB.94.035443
  41. 41.
    Dawson P, Frey D, Kalathingal V, Mehfuz R, Mitra J (2017) Novel routes to electromagnetic enhancement and its characterisation in surface- and tip-enhanced Raman scattering. Faraday Discuss 205:121–148.  https://doi.org/10.1039/c7fd00128b CrossRefPubMedGoogle Scholar
  42. 42.
    Kawata S, Ichimura T, Taguchi A, Kumamoto Y (2017) Nano-Raman scattering microscopy: resolution and enhancement. Chem Rev 117(7):4983–5001.  https://doi.org/10.1021/acs.chemrev.6b00560 CrossRefPubMedGoogle Scholar
  43. 43.
    Wang X, Huang SC, Huang TX, Su HS, Zhong JH, Zeng ZC, Li MH, Ren B (2017) Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem Soc Rev 46(13):4020–4041.  https://doi.org/10.1039/c7cs00206h CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education)Chongqing UniversityChongqingChina
  3. 3.MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of PhysicsNankai UniversityTianjinChina

Personalised recommendations