pp 1–8 | Cite as

Single-Particle Spectroscopy of Supported Silver Clusters on Silicon: Substrate Effects on Localized Surface Plasmons

  • K. StallbergEmail author
  • G. Lilienkamp
  • W. Daum


The presence of a surrounding medium strongly affects the spectral properties of localized surface plasmons at metallic nanoparticles. Vice versa, plasmonic resonances have large impact on the electric polarization in a surrounding or supporting material. For applications, e.g., in light-converting devices, the coupling of localized surface plasmons with polarizations in semiconducting substrates is of particular importance. Using photoemission electron microscopy with tunable laser excitation, we perform single-particle spectroscopy of silver nanoclusters directly grown on Si(100). Two distinct localized surface plasmon modes are observed as resonances in the two-photon photoemission signals from individual silver clusters. The strengths of these resonances strongly depend on the polarization of the exciting electric field, which allows us to assign them to plasmon modes with polarizations parallel and perpendicular, respectively, to the supporting silicon substrate. Our mode assignment is supported by simulations which provide insight into the mutual interaction of charge oscillations at the particle surface with electric polarizations at the silver/silicon interface.


Localized surface plasmon (LSP) Plasmon-induced polarization Photoemission electron microscopy (PEEM) 



We gratefully acknowledge support from NTH School for Contacts in Nanosystems.


  1. 1.
    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley-VCH, New YorkCrossRefGoogle Scholar
  2. 2.
    Clavero C (2014) Plasmon-induced hot electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon 8:95CrossRefGoogle Scholar
  3. 3.
    Manjavacas A, Liu JG, Kulkarni V, Nordlander P (2014) Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8:7630CrossRefGoogle Scholar
  4. 4.
    Zheng BY, Zhao H, Manjavacas A, McClain M, Nordlander P, Halas NJ (2015) Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun 6:7797CrossRefGoogle Scholar
  5. 5.
    Narang P, Sundararaman R, Atwater HA (2016) Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5:96CrossRefGoogle Scholar
  6. 6.
    Besteiro LV, Kong XT, Wang Z, Hartland G, Govorov AO (2017) Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photon 4:2759CrossRefGoogle Scholar
  7. 7.
    Hartland GV, Besteiro LV, Johns P, Govorov AO (2017) What’s so hot about electrons in metal nanoparticles? ACS Energy Lett 2:1641CrossRefGoogle Scholar
  8. 8.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205CrossRefGoogle Scholar
  9. 9.
    Bauer C, Giessen H (2013) Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures. Opt Express 21:A363CrossRefGoogle Scholar
  10. 10.
    Kim HJ, Lee SH, Upadhye AA, Ro I, Tejedor-Tejedor MI, Anderson MA, Kim WB, Huber GW (2014) Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. ACS Nano 8:10756CrossRefGoogle Scholar
  11. 11.
    Naldoni A, Riboni F, Guler U, Boltasseva A, Shalaev VM, Kildishev AV (2016) Solar-powered plasmon-enhanced heterogeneous catalysis. Nanophotonics 5:112CrossRefGoogle Scholar
  12. 12.
    Duval Malinsky M, Kelly KL, Schatz GC, Van Duyne RP (2001) Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B 105:2343CrossRefGoogle Scholar
  13. 13.
    Knight MW, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett 9:2188CrossRefGoogle Scholar
  14. 14.
    Ringe E, McMahon JM, Sohn K, Cobley C, Xia Y, Huang J, Schatz GC, Marks LD, Van Duyne RP (2010) Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach. J Phys Chem C 114:12511CrossRefGoogle Scholar
  15. 15.
    Vernon KC, Funston AM, Novo C, Gómez DE, Mulvaney P, Davis TJ (2010) Influence of particle–substrate interaction on localized plasmon resonances. Nano Lett 10:2080CrossRefGoogle Scholar
  16. 16.
    Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657CrossRefGoogle Scholar
  17. 17.
    Lazzari R, Jupille J, Cavallotti R, Simonsen I (2014) Model-free unraveling of supported nanoparticles plasmon resonance modes. J Phys Chem C 118:7032CrossRefGoogle Scholar
  18. 18.
    Thakkar N, Montoni NP, Cherqui C, Masiello DJ (2018) Plasmonic Landau damping in active environments. Phys Rev B 97:121403CrossRefGoogle Scholar
  19. 19.
    Cherqui C, Li G, Busche JA, Quillin SC, Camden JP, Masiello DJ (2018) Multipolar nanocube plasmon mode-mixing in finite substrates. J Phys Chem Lett 9:504CrossRefGoogle Scholar
  20. 20.
    Munzinger M, Wiemann C, Rohmer M, Guo L, Aeschlimann M, Bauer M (2005) The lateral photoemission distribution from a defined cluster/substrate system as probed by photoemission electron microscopy. New J Phys 7:68CrossRefGoogle Scholar
  21. 21.
    Kubo A, Onda K, Petek H, Sund Z, Jung YS, Kim HK (2005) Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett 5:1123CrossRefGoogle Scholar
  22. 22.
    Word RC, Dornan T, Könenkamp R (2010) Photoemission from localized surface plasmons in fractal metal nanostructures. Appl Phys Lett 96:251110CrossRefGoogle Scholar
  23. 23.
    Word RC, Fitzgerald J, Könenkamp R (2011) Photoelectron emission control with polarized light in plasmonic metal random structures. Appl Phys Lett 99:041106CrossRefGoogle Scholar
  24. 24.
    Aeschlimann M, Bauer M, Bayer D, Brixner T, Cunovic S, Fischer A, Melchior P, Pfeiffer W, Rohmer M, Schneider C, Strüber C, Tuchscherer P, Voronine DV (2012) Optimal open-loop near-field control of plasmonic nanostructures. New J Phys 14:33030CrossRefGoogle Scholar
  25. 25.
    Yu H, Sun Q, Ueno K, Oshikiri T, Kubo A, Matsuo Y, Misawa H (2016) Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy. ACS Nano 10: 10373CrossRefGoogle Scholar
  26. 26.
    Stallberg K, Lilienkamp G, Daum W (2017) Plasmon-exciton coupling at individual porphyrin-covered silver clusters. J Phys Chem C 121:13833CrossRefGoogle Scholar
  27. 27.
    Lilienkamp G (2000) . In: Frank L, Ciampor F (eds) Proceedings of the 12th European congress on electron microscopy, vol III, p 177Google Scholar
  28. 28.
    Stallberg K, Lilienkamp G, Daum W (2015) Multiphoton photoemission electron microscopy of porphyrin films on nanostructured Ag: molecular resonances and plasmonic field enhancement. J Phys Chem C 119:21626CrossRefGoogle Scholar
  29. 29.
    Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4729CrossRefGoogle Scholar
  30. 30.
    Fuchs R (1975) Theory of the optical properties of ionic crystal cubes. Phys Rev B 11:1732CrossRefGoogle Scholar
  31. 31.
    García de Abajo FJ, Aizpurua J (1997) Numerical simulation of electron energy loss near inhomogeneous dielectrics. Phys Rev B 56:15873CrossRefGoogle Scholar
  32. 32.
    García de Abajo FJ, Howie A (2002) Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys Rev B 65:115418CrossRefGoogle Scholar
  33. 33.
    Kuwata H, Tamaru H, Esumi K, Miyano K (2003) Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation. Appl Phys Lett 83:4625CrossRefGoogle Scholar
  34. 34.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  35. 35.
    Aspnes DE, Studna AA (1983) Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys Rev B 27:985CrossRefGoogle Scholar
  36. 36.
    Oldenburg K, Hartmann H, Lermé J, Pohl MM, Meiwes-Broer KH, Barke I, Speller S (2019) Virtual plasmonic dimers for ultrasensitive inspection of cluster–surface coupling. J Phys Chem C 123:1379CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Energy Research and Physical TechnologiesTU ClausthalClausthal-ZellerfeldGermany
  2. 2.Faculty of Physics and Materials Sciences CenterPhilipps-UniversityMarburgGermany

Personalised recommendations