, Volume 14, Issue 6, pp 1393–1403 | Cite as

Impact of Propagative Surface Plasmon Polaritons on the Electromagnetic Enhancement by Localized Gap Surface Plasmons Between Metallic Nanoparticles and Substrate

  • Ying Zhong
  • Fuping Sun
  • Haitao LiuEmail author


The nanoparticle-on-mirror system as a surface-enhanced Raman scattering substrate is sufficient for single molecule detection and possesses advantages of high reproducibility and ease of assembly. In this paper, one single spherical gold nanoparticle (NP) placed on a flat gold substrate with a gap size of 10 nm is firstly studied. Then, two NPs with separations in order of wavelengths is investigated. The enhanced field of the localized gap surface plasmon (LGSP) in the NP-substrate nanogap is analyzed quantitatively with the finite element method, and a simplified model is proposed to describe the impact of the propagative surface plasmon polariton (SPP) on the LGSP. A 34% improvement of the enhancement factor of the Raman signal is achieved compared to a single NP. The field distribution of SPPs is found to play an important role in determining the optimal positions of NPs to generate the strongest hot spots. Then, the case of a single NP or a NP doublet in a gold groove is considered, and an 8.22-fold increase of the enhancement factor of the Raman signal is obtained compared to the case without the groove. The interference among the groove-excited SPPs, the NP-excited SPPs, and the LGSP determines the optimal positions of the NPs in the groove to generate the strongest hot spots. The present work reveals the great impact of the propagative SPPs on the field enhancement of the LGSP in the NP-substrate gap, and provides a theoretical basis for generating multiple strong hot spots by arranging NPs’ positions according to the field distribution of the propagative SPPs.


Surface-enhanced Raman scattering Surface plasmon polariton Resonance Nanoparticle Interference 


Funding information

This study is financially supported by the National Natural Science Foundation of China (NSFC) (61775105, 11504270), 111 Project (B16027), Engineering Research Center of Thin Film Photo-electronics Technology of Ministry of Education, and International Cooperation Base for New PV Technology.


  1. 1.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefGoogle Scholar
  2. 2.
    Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360CrossRefGoogle Scholar
  3. 3.
    Ding S, You E, Tian Z, Moskovits M (2017) Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46:4042–4076CrossRefGoogle Scholar
  4. 4.
    Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, Van Duyne RP (2014) Molecular plasmonics for nanoscale spectroscopy. Chem Soc Rev 43:1230–1247CrossRefGoogle Scholar
  5. 5.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574CrossRefGoogle Scholar
  6. 6.
    McLellan JM, Siekkinen A, Chen J, Xia Y (2006) Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem Phys Lett 427:122–126CrossRefGoogle Scholar
  7. 7.
    Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li Z, Ginger D, Xia Y (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7:1032–1036CrossRefGoogle Scholar
  8. 8.
    Fang J, Liu S, Li Z (2011) Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor. Biomaterials 32:4877–4884CrossRefGoogle Scholar
  9. 9.
    Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9:60–67CrossRefGoogle Scholar
  10. 10.
    Kleinman SL, Ringe E, Valley N, Wustholz KL, Phillips E, Scheidt KA, Schatz GC, Van Duyne RP (2011) Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment. J Am Chem Soc 133:4115–4122CrossRefGoogle Scholar
  11. 11.
    Das G, Mecarini F, Gentile F, De Angelis F, Mohan Kumar HG, Candeloro P, Liberale C, Cuda G, Di Fabrizio E (2009) Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens. Bioelectron 24:1693–1699CrossRefGoogle Scholar
  12. 12.
    Park W, Ahn S, Kim Z (2008) Surface-enhanced Raman scattering from a single nanoparticle–plane junction. Chem Phys Chem 9:2491–2494CrossRefGoogle Scholar
  13. 13.
    Hill RT, Mock JJ, Urzhumov Y, Sebba DS, Oldenburg SJ, Chen S, Lazarides AA, Chilkoti A, Smith DR (2010) Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. Nano Lett 10:4150–4154CrossRefGoogle Scholar
  14. 14.
    Li L, Hutter T, Steiner U, Mahajan S (2013) Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. Analyst 138:4574–4578CrossRefGoogle Scholar
  15. 15.
    Mubeen S, Zhang S, Kim N, Lee S, Kramer S, Xu H, Moskovits M (2012) Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett 12:2088–2094CrossRefGoogle Scholar
  16. 16.
    Benz F, Tserkezis C, Herrmann LO, De Nijs B, Sanders A, Sigle DO, Pukenas L, Evans SD, Aizpurua J, Baumberg JJ (2015) Nanooptics of molecular-shunted plasmonic nanojunctions. Nano Lett 15:669–674CrossRefGoogle Scholar
  17. 17.
    Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8:2245–2252CrossRefGoogle Scholar
  18. 18.
    Huang Y, Ma L, Li J, Zhang Z (2017) Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement. Nanotechnology 28:105203CrossRefGoogle Scholar
  19. 19.
    Lévêque G, Martin OJF (2006) Tunable composite nanoparticle for plasmonics. Opt Lett 31:2750–2752CrossRefGoogle Scholar
  20. 20.
    Lévêque G, Martin OJF (2006) Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 14:9971–9981CrossRefGoogle Scholar
  21. 21.
    Lombardi A, Demetriadou A, Weller L, Andrae P, Benz F, Chikkaraddy R, Aizpurua J, Baumberg JJ (2016) Anomalous spectral shift of near-and far-field plasmonic resonances in nanogaps. ACS Photonics 3:471–477CrossRefGoogle Scholar
  22. 22.
    Huang S, Ming T, Lin Y, Ling X, Ruan Q, Palacios T, Wang J, Dresselhaus M, Kong J (2016) Ultrasmall mode volumes in plasmonic cavities of nanoparticle-on-mirror structures. Small 12:5190–5199CrossRefGoogle Scholar
  23. 23.
    Huang Y, Ma L, Hou M, Li J, Xie Z, Zhang Z (2016) Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror. Sci Rep 6:30011CrossRefGoogle Scholar
  24. 24.
    Chen S, Meng L, Shan H, Li J, Qian L, Williams CT, Yang Z, Tian Z (2016) How to light special hot spots in multiparticle-film configurations. ACS Nano 10:581–587CrossRefGoogle Scholar
  25. 25.
    Li X, Choy WCH, Ren X, Zhang D, Lu H (2014) Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system. Adv Funct Mater 24:3114–3122CrossRefGoogle Scholar
  26. 26.
    Wang X, Li M, Meng L, Lin K, Feng J, Huang T, Yang Z, Ren B (2014) Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. ACS Nano 8:528–536CrossRefGoogle Scholar
  27. 27.
    Chen F, Huang Y, Wei H, Wang S, Zeng X, Cao W, Wen W (2018) Material influence on hot spot distribution in the nanoparticle heterodimer on film. Phys E 98:1–5CrossRefGoogle Scholar
  28. 28.
    Palik E D (1991) Handbook of optical constants of solids II, BostonGoogle Scholar
  29. 29.
    García-Vidal FJ, Pendry JB (1996) Collective theory for surface enhanced raman scattering. Phys Rev Lett 77:1163–1166CrossRefGoogle Scholar
  30. 30.
    Bai Q, Perrin M, Sauvan C, Hugonin JP, Lalanne P (2013) Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Opt Express 21:27371–27382CrossRefGoogle Scholar
  31. 31.
    Nikitin AY, García-Vidal FJ, Martín-Moreno L (2010) Surface electromagnetic field radiated by a subwavelength hole in a metal film. Phys Rev Lett 105:073902CrossRefGoogle Scholar
  32. 32.
    Bigourdan F, Hugonin JP, Marquier F, Sauvan C, Greffet JJ (2016) Nanoantenna for electrical generation of surface plasmon polaritons. Phys Rev Lett 116:106803CrossRefGoogle Scholar
  33. 33.
    Jia H, Lalanne P, Liu H (2016) Comprehensive surface-wave description for the nano-scale energy concentration with resonant dipole antennas. Plasmonics 11:1025–1033CrossRefGoogle Scholar
  34. 34.
    Kim S, Shafiei F, Ratchford D, Li X (2011) Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22:115301CrossRefGoogle Scholar
  35. 35.
    Shafiei F, Monticone F, Le KQ, Liu X, Hartsfield T, Alu A, Li X (2013) A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol 8:95–100CrossRefGoogle Scholar
  36. 36.
    Sun L, Ma T, Yang S, Kim D, Lee G, Shi J, Martinez I, Yi G, Shvets G, Li X (2016) The interplay between optical bianisotropy and magnetism in plasmonic metamolecules. Nano Lett 16:4322–4328CrossRefGoogle Scholar
  37. 37.
    Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T, Yuan X (2013) Focused plasmonic trapping of metallic particles. Nat Commun 4:2891CrossRefGoogle Scholar
  38. 38.
    Zeng Z, Liu H (2012) Electromagnetic enhancement by a T-shaped metallic nanogroove: impact of surface plasmon polaritons and other surface waves. IEEE J Sel Top Quant 18:1669–1675CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Precision Measurement Technology and InstrumentsTianjin UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina

Personalised recommendations