Advertisement

Plasmonics

pp 1–8 | Cite as

Novel SPP Nanolaser with Two Modes of Electromagnetic for Optoelectronic Integration Device

  • Jun ZhuEmail author
  • Zhengjie Xu
Article
  • 6 Downloads

Abstract

Surface plasmon polariton (SPP) nanolaser, which can achieve all-optical circuits, is a major research topic in the field of micro light source. In this work, we proposed a novel double-mode SPP nanolaser which is consisted of InGaAsP high-index dielectric, Ag metal, and T-shape MgF2 low-index dielectric. The best performances of the proposed waveguide can be obtained in the conditions of λ = 675 nm, R = 70 nm, Gap = 3 nm, and w = 2 nm, which is corresponded the incident wavelength, radius of nanowires, gap, and width, respectively. In that conditions, the mode area and threshold can be reached at 0.05 λ2 and 1.23 × 104 cm−1. Furthermore, the propagation distance and the confinement factor can reach 1200 nm and 0.33, respectively. It shows that the proposed device has significant potential in ultrahigh density plasmonic and photonic integrated circuit.

Keywords

SPP nanolayer Multiple plasmonic modes Waveguide 

Notes

Funding

This work was supported by supported by the Guangxi Natural Science Foundation (2017GXNSFAA198261).

References

  1. 1.
    Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—a route to nanoscale optical devices. Adv Mater 13(19):1501–1505CrossRefGoogle Scholar
  2. 2.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  3. 3.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91CrossRefGoogle Scholar
  4. 4.
    Oulton RF, Sorger VJ, Zentgraf T, Ma R-M, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632CrossRefGoogle Scholar
  5. 5.
    Crosnier G, Sanchez D, Bouchoule S, Monnier P, Beaudoin G, Sagnes I, Raj R, Raineri F (2017) Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photonics 11:297–300CrossRefGoogle Scholar
  6. 6.
    Liu X, Gao J, Yang H, Wang X, Tian S, Guo C (2017) Hybrid plasmonic modes in multilayer trench grating structures. Adv Opt Mater 5(22):1–8Google Scholar
  7. 7.
    Bermúdez-Ureña E, Tutuncuoglu G, Cuerda J, Smith CLC, Bravo-Abad J, Bozhevolnyi SI, Fontcuberta i Morral A, García-Vidal FJ, Quidant R (2017) Plasmonic waveguide-integrated nanowire laser. Nano Lett 17(2):747–754CrossRefGoogle Scholar
  8. 8.
    Bian Y, Zheng Z, Liu Y, Zhu J, Zhou T (2011) Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides. IEEE Photon Technol Lett 23(13):884–886CrossRefGoogle Scholar
  9. 9.
    Plotz GA, Simon HJ, Tucciarone JM (1979) Enhanced total reflection with surface plasmons. J Opt Soc Am 69(3):419–422CrossRefGoogle Scholar
  10. 10.
    Zhang L, Lu X, Gong Y, Copner N, Zhao W, Wang G, Zhang W (2015) Low-loss slow-light in periodic plasmonic waveguides. IEEE Photon Technol Lett 27(11):1208–1211CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronic EngineeringGuangxi Normal UniversityGuilinChina

Personalised recommendations