Advertisement

Plasmonics

pp 1–5 | Cite as

Large Tunable Lateral Shift from Guided Wave Surface Plasmon Resonance

  • Yongqiang KangEmail author
  • Peng Gao
  • Hongmei Liu
  • Jing ZhangEmail author
Article
  • 27 Downloads

Abstract

Large tunable lateral shift from guided wave surface plasmon resonance (GWSPR) is theoretically predicted. The dip of reflectivity and magnitude of the lateral shift can be controlled by the thickness of silver layer. The position of minimum reflection and maximum Goos-Hänchen (GH) shift can be conveniently adjusted by guided layer. The largest GH shifts at the optimal thickness of silver film can be hundreds of wavelengths when GWSPR is excited. The numerical calculation results from the Gaussian beam are in accordance with theoretical results.

Keywords

Lateral shift Guided wave Surface plasmon resonance Fresnel reflection coefficient 

Notes

Funding Information

This research was financially supported by the National Science Foundation for China (Grant no. 61605098, 11664004, 11874245) and Launching Funds for Doctors of Shanxi Datong University (Grant no. 2014-B-04) and Shanxi Provincial Natural Science Foundation (Grant no. 201801D121071, 201701D221096) and Natural Science Fund of Datong City (Grant no. 2017131) and Foundation for Doctors of Hengyang Normal University (Grant no. 16D03).

References

  1. 1.
    Xiang Y, Dai X, Wen S (2007) Negative and positive Goos–Hänchen shifts of a light beam transmitted from an indefinite medium slab. Appl Phys A 87:285–290CrossRefGoogle Scholar
  2. 2.
    Luo C, Guo J, Wang Q, Xiang Y (2013) Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure. Opt Express 21:10430–10439CrossRefGoogle Scholar
  3. 3.
    Merano M, Aiello A, Gw TH, van Exter MP, Eliel ER, Woerdman JP (2007) Observation of Goos-Hanchen shifts in metallic reflection. Opt Express 15(24):15928–15934CrossRefGoogle Scholar
  4. 4.
    Kang YQ, Xiang Y, Luo C (2018) Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials. Appl Phys B 124(6):115CrossRefGoogle Scholar
  5. 5.
    Kang YQ, Ren W, Cao Q (2018) Large tunable negative lateral shift from graphene-based hyperbolic metamaterials backed by a dielectric. Superlattice Microst 120:1–6CrossRefGoogle Scholar
  6. 6.
    Song Y, Wu H-C, Guo Y (2012) Giant Goos-Hänchen shift in graphene double-barrier structures. Appl Phys Lett 100(25):116Google Scholar
  7. 7.
    Leung PT, Chen CW, Chiang HP (2007) Large negative Goos–Hanchen shift at metal surfaces. Opt Commun 276(2):206–208CrossRefGoogle Scholar
  8. 8.
    Grzegorczyk TM, Chen X, Pacheco Jr., Chen J, Wu BI, Kong JA (2005) Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials. Prog Electromagn Res 51:83–113Google Scholar
  9. 9.
    Liu X, Cao Z, Zhu P, Shen Q, Liu X (2006) Large positive and negative lateral optical beam shift in prism-waveguide coupling system. Phys Rev E Stat Nonlinear Soft Matter Phys 73(2):056617CrossRefGoogle Scholar
  10. 10.
    Okamoto T, Yamamoto M, Yamaguchi I (2000) Optical waveguide absorption sensor using a single coupling prism. J Opt Soc Am A 17(10):1880–1886CrossRefGoogle Scholar
  11. 11.
    Jiang L, Wang Q, Xiang Y, Dai X, Wen S (2013) Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface. IEEE Photonics J 5(3):6500108–6500108CrossRefGoogle Scholar
  12. 12.
    Aiello A, Woerdman JP (2008) Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. Opt Lett 33(13):1437–1439CrossRefGoogle Scholar
  13. 13.
    Aiello A, Woerdman JP, Merano M, Hermosa N (2010) Demonstration of a quasi-scalar angular Goos-Hänchen effect. Opt Lett 35(21):3562CrossRefGoogle Scholar
  14. 14.
    Merano M, Aiello A, Exter MPV, Woerdman JP (2009) Observing angular deviations in the specular reflection of a light beam. Nat Photonics 3(3):337–340CrossRefGoogle Scholar
  15. 15.
    Aiello A, Merano M, Woerdman JP (2009) Duality between spatial and angular shift in optical reflection. Phys RevA 80(6):3694–3697Google Scholar
  16. 16.
    Lahav A, Auslender M, Abdulhalim I (2008) Sensitivity enhancement of guided-wave surface-plasmon resonance sensors. Opt Lett 33(21):2539–2541CrossRefGoogle Scholar
  17. 17.
    Cherifi A, Bouhafs B (2017) Sensitivity enhancement of a surface plasmon resonance sensor using porous metamaterial layers. Mater Res Exp 4(12):125009CrossRefGoogle Scholar
  18. 18.
    Wang HF, Zhou ZX, Tian H, Liu DJ, Shen YQ (2010) Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal. J Opt 12(4):045708CrossRefGoogle Scholar
  19. 19.
    Yin X, Hesselink L, Liu Z, Fang N, Zhang X (2004) Large positive and negative lateral optical beam displacements due to surface plasmon resonance. Appl Phys Lett 85(3):372–374CrossRefGoogle Scholar
  20. 20.
    Sui G, Cheng L, Chen L (2011) Large positive and negative lateral optical beam shift due to long-range surface plasmon resonance. Opt Commun 284(6):1553–1556CrossRefGoogle Scholar
  21. 21.
    Li CF, Zhou H, Hou P, Chen X (2008) Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a kerr nonlinear dielectric. Opt Lett 33(11):1249–1251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsShanxi Datong UniversityDatongChina
  2. 2.College of Mathematical and Physical SciencesQingdao University of Science and TechnologyQingdaoChina
  3. 3.Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education and Guangxi Key, Laboratory of Earth Surface Processes and Intelligent SimulationGuangxi Teachers Education UniversityNanningChina

Personalised recommendations