pp 1–13 | Cite as

A Route to Unusually Broadband Plasmonic Absorption Spanning from Visible to Mid-infrared

  • Majid AalizadehEmail author
  • Amin Khavasi
  • Andriy E. Serebryannikov
  • Guy A. E. Vandenbosch
  • Ekmel Ozbay


In this paper, a route to ultra-broadband absorption is suggested and demonstrated by a feasible design. The high absorption regime (absorption above 90%) for the suggested structure ranges from visible to mid-infrared (MIR), i.e., for the wavelength varying from 478 to 3278 nm that yields an ultra-wide band with the width of 2800 nm. The structure consists of a top-layer-patterned metal-insulator-metal (MIM) configuration, into the insulator layer of which, an ultra-thin 5 nm layer of manganese (Mn) is embedded. The MIM configuration represents a Ti-Al2O3-Ti tri-layer. It is shown that, without the ultra-thin layer of Mn, the absorption bandwidth is reduced to 274 nm. Therefore, adding only a 5 nm layer of Mn leads to a more than tenfold increase in the width of the absorption band. It is explained in detail that the physical mechanism yielding this ultra-broadband result is a combination of plasmonic and non-plasmonic resonance modes, along with the appropriate optical properties of Mn. This structure has the relative bandwidth (RBW) of 149%, while only one step of lithography is required for its fabrication, so it is relatively simple. This makes it rather promising for practical applications.


Localized surface plasmons Nanodisk array Impedance matching Guided-mode resonance 



Ekmel Ozbay acknowledges partial support from the TUBA. Amin Khavasi also acknowledges Research Office of Sharif University of Technology.

Funding Information

Narodowe Centrum Nauki (NCN), Poland (DEC-2015/17/B/ST3/00118–Metasel); Turkish Academy of Sciences (TUBA); Research Office of Sharif University of Technology.


  1. 1.
    Wang ZY, Tong Z, Ye QX, Hu H, Nie X, Yan C, Shang W, Song CY, Wu JB, Wang J, Bao H, Tao P, Deng T (2017) Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage. Nat Commun 8:1478Google Scholar
  2. 2.
    McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Horantner MT, Haghighirad A, Sakai N, Korte L, Rech B, Johnston MB, Herz LM, Snaith HJ (2016) A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269):151–155CrossRefGoogle Scholar
  3. 3.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348CrossRefGoogle Scholar
  4. 4.
    Tittl A, Mai P, Taubert R, Dregely D, Liu N, Giessen H (2011) Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett 11(10):4366–4369CrossRefGoogle Scholar
  5. 5.
    Li W, Valentine J (2014) Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14(6):3510–3514CrossRefGoogle Scholar
  6. 6.
    Bessonov AA, Allen M, Liu YL, Malik S, Bottomley J, Rushton A, Medina-Salazar I, Voutilainen M, Kallioinen S, Colli A, Bower C, Andrew P, Ryhanen T (2017) Compound quantum dot-perovskite optical absorbers on graphene enhancing short-wave infrared photodetection. ACS Nano 11(6):5547–5557CrossRefGoogle Scholar
  7. 7.
    Fan KB, Suen JY, Liu XY, Padilla WJ (2017) All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 4(6):601–604CrossRefGoogle Scholar
  8. 8.
    Cahill DG, Braun PV, Chen G, Clarke DR, Fan SH, Goodson KE, Keblinski P, King WP, Mahan GD, Majumdar A, Maris HJ, Phillpot SR, Pop E, Shi L (2014) Nanoscale thermal transport. II. 2003-2012. Appl Phys Rev 1(1):011305CrossRefGoogle Scholar
  9. 9.
    Cao TC, Xu KL, Chen GM, Guo CY (2013) Poly (ethylene terephthalate) nanocomposites with a strong UV-shielding function using UV-absorber intercalated layered double hydroxides. RSC Adv 3(18):6282–6285CrossRefGoogle Scholar
  10. 10.
    Khalid T, Albasha L, Qaddoumi N, Yehia S (2017) Feasibility study of using electrically conductive concrete for electromagnetic shielding applications as a substitute for carbon-laced polyurethane absorbers in anechoic chambers. IEEE Trans Antenn Propag 65(5):2428–2435Google Scholar
  11. 11.
    Nguyen TT, Lim S (2018) Design of metamaterial absorber using eight-resistive-arm cell for simultaneous broadband and wide-incidence-angle absorption. Sci Rep 8:6633Google Scholar
  12. 12.
    Serebryannikov AE, Nojima S, Ozbay E (2014) One-way absorption of terahertz waves in rod-type and multilayer structures containing polar dielectrics. Phys Rev B 90:235126CrossRefGoogle Scholar
  13. 13.
    Rodriguez-Ulibarri P, Beruete M, Serebryannikov AE (2017) One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers. Phys Rev B 96:155148CrossRefGoogle Scholar
  14. 14.
    Lin YY, Cui YX, Ding F, Fung KH, Ji T, Li DD, Hao YY (2017) Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Opt Mater Express 7(2):606–617CrossRefGoogle Scholar
  15. 15.
    Guo WL, Liu YX, Han TC (2016) Ultra-broadband infrared metasurface absorber. Opt Express 24(18):20586–20592CrossRefGoogle Scholar
  16. 16.
    Ding F, Dai J, Chen YT, Zhu JF, Jin Y, Bozhevolnyi SI (2016) Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci Rep 6:39445CrossRefGoogle Scholar
  17. 17.
    Ghobadi A, Hajian H, Gokbayrak M, Dereshgi SA, Toprak A, Butun B, Ozbay E (2017) Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity. Opt Express 25(22):27624–27634CrossRefGoogle Scholar
  18. 18.
    Hubarevich A, Kukhta A, Demir HV, Sun X, Wang H (2015) Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber. Opt Express 23(8):9753–9761CrossRefGoogle Scholar
  19. 19.
    Chen K, Adato R, Altug H (2012) Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6(9):7998–8006CrossRefGoogle Scholar
  20. 20.
    Zhang CL, Huang C, Pu MB, Song JK, Zhao ZY, Wu XY, Luo XG (2017) Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance. Sci Rep 7:5652Google Scholar
  21. 21.
    Cong JW, Zhou ZQ, Yun BF, Lv L, Yao HB, Fu YH, Ren NF (2016) Broadband visible-light absorber via hybridization of propagating surface plasmon. Opt Lett 41(9):1965–1968CrossRefGoogle Scholar
  22. 22.
    Li Q, Gao JS, Yang HG, Liu H, Wang XY, Li ZZ, Guo X (2017) Tunable plasmonic absorber based on propagating and localized surface plasmons using metal-dielectric-metal structure. Plasmonics 12(4):1037–1043CrossRefGoogle Scholar
  23. 23.
    Li ZY, Butun S, Aydin K (2015) Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2(2):183–188CrossRefGoogle Scholar
  24. 24.
    Aalizadeh M, Serebryannikov AE, Khavasi A, Vandenbosch GAE, Ozbay E (2018) Toward electrically tunable, lithography-free, ultra-thin color filters covering the whole visible Spectrum. Sci Rep 8:11316CrossRefGoogle Scholar
  25. 25.
    Luo SW, Zhao J, Zuo DL, Wang XB (2016) Perfect narrow band absorber for sensing applications. Opt Express 24(9):9288–9294CrossRefGoogle Scholar
  26. 26.
    Tsakmakidis KL, Boardman AD, and Hess O (2007) “Trapped rainbow” storage of light in metamaterials, Nature 450(7168):397–401Google Scholar
  27. 27.
    Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517Google Scholar
  28. 28.
    Ghobadi A, Hajian H, Dereshgi SA, Bozok B, Butun B, Ozbay E (2017) Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth. Sci Rep 7:15079CrossRefGoogle Scholar
  29. 29.
    Dereshgi SA, Okyay AK (2016) Large area compatible broadband superabsorber surfaces in the VIS-NIR spectrum utilizing metal-insulator-metal stack and plasmonic nanoparticles. Opt Express 24(16):17644–17653CrossRefGoogle Scholar
  30. 30.
    Ghobadi A, Dereshgi SA, Hajian H, Birant G, Butun B, Bek A, Ozbay E (2017) 97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold. Nanoscale 9(43):16652–16660CrossRefGoogle Scholar
  31. 31.
    Li ZY, Palacios E, Butun S, Kocer H, Aydin K (2015) Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci Rep 5:15137Google Scholar
  32. 32.
    Aalizadeh M, Khavasi A, Butun B, Ozbay E (2018) Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure. Sci Rep 8:9162Google Scholar
  33. 33.
    Ding F, Mo L, Zhu JF, He SL (2015) Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber. Appl Phys Lett 106:061108CrossRefGoogle Scholar
  34. 34.
  35. 35.
  36. 36.
    Lebib A, Chen Y, Bourneix J, Carcenac F, Cambril E, Couraud L, Launois H (1999) Nanoimprint lithography for a large area pattern replication. Microelectron Eng 46(1–4):319–322CrossRefGoogle Scholar
  37. 37.
    Palik ED, Handbook of optical constants of solids (Academic Press, 1998)Google Scholar
  38. 38.
    Querry MR, Optical constants of minerals and other materials from the millimeter to the ultraviolet (US Army Armament, Munitions & Chemical Research, Development & Engineering Center, 1987)Google Scholar
  39. 39.
    Wood DL, Nassau K, Kometani TY, Nash DL (1990) Optical-properties of cubic hafnia stabilized with Yttria. Appl Opt 29(4):604–607CrossRefGoogle Scholar
  40. 40.
    Siefke T, Kroker S, Pfeiffer K, Puffky O, Dietrich K, Franta D, Ohlidal I, Szeghalmi A, Kley EB, Tunnermann A (2016) Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv Opt Mater 4(11):1780–1786CrossRefGoogle Scholar
  41. 41.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193CrossRefGoogle Scholar
  42. 42.
    Kuo WK, Hsu CJ (2017) Two-dimensional grating guided-mode resonance tunable filter. Opt Express 25(24):29642–29649CrossRefGoogle Scholar
  43. 43.
    Boonruang S, Greenwell A, Moharam MG (2006) Multiline two-dimensional guided-mode resonant filters. Appl Opt 45(22):5740–5747CrossRefGoogle Scholar
  44. 44.
    Boonruang S, Greenwell A, Moharam MG (2007) Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence. Appl Opt 46(33):7982–7992CrossRefGoogle Scholar
  45. 45.
    Della Giovampaola C, Engheta N (2016) Plasmonics without negative dielectrics. Phys Rev B 93:195152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringBilkent UniversityAnkaraTurkey
  2. 2.Nanotechnology Research Center (NANOTAM)Bilkent UniversityAnkaraTurkey
  3. 3.Electrical Engineering DepartmentSharif University of TechnologyTehranIran
  4. 4.ESAT-TELEMICKatholieke Universiteit LeuvenLeuvenBelgium
  5. 5.Faculty of PhysicsAdam Mickiewicz UniversityPoznanPoland
  6. 6.National Nanotechnology Research Center (UNAM)Bilkent UniversityAnkaraTurkey
  7. 7.Department of PhysicsBilkent UniversityAnkaraTurkey

Personalised recommendations