pp 1–9 | Cite as

A Tunable Double-Decker Ultra-Broadband THz Absorber Based on a Phase Change Material

  • Xin-Ru Kong
  • Ri-Na Dao
  • Hai-Feng ZhangEmail author


In this paper, a tunable double-decker ultra-broadband THz absorber is proposed based on a phase change material, which is vanadium dioxide (VO2). The tailored tunable double-decker phase change material absorber (TDPA) can be regulated by the temperature. The absorption of such TDPA spans from 7.36 to 16.67 THz when the temperature is equal to 350 K for TE wave, which is over 90% and its relative bandwidth is 77.4% under the circumstances. But such a TDPA can be regarded as a perfect reflector when the temperature is 300 K. When the incident angle is oblique, the absorption also is investigated, which shows that the presented TDPA is incident-angle-independent, when the incident angle is less than 40°. The relationship between the absorption features and the structure parameters is also discussed. The distributions of current surface, the electric fields, and the power loss densities are given to expound the physical mechanism of such a TDPA. Besides, by setting different temperature, a reconfigurable device can be realized in the proposed TDPA.


Ultra-broadband absorber Tunable absorption The phase change material Vanadium dioxide 


Funding Information

This work was supported by the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No.K201927).


  1. 1.
    Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber. Appl Phys Express 7(7):082601CrossRefGoogle Scholar
  2. 2.
    Grant J, Ma Y, Saha S, Lok LB, Khalid A, DR S (2011) Cumming polarization insensitive terahertz metamaterial absorber. Opt Lett 36(8):1524–1526CrossRefGoogle Scholar
  3. 3.
    Li S, Gao J, Cao X, Li W, Zhang Z, Zhang D (2014) Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances. J Appl Phys 116(4):043710CrossRefGoogle Scholar
  4. 4.
    Sun J, Liu L, Dong G, Zhou J (2011) An extremely broad band metamaterial absorber based on destructive interference. Opt Express 19(22):21155–21162CrossRefGoogle Scholar
  5. 5.
    Liu S, Chen H, Cui TJ (2015) A broadband terahertz absorber using multi-layer stacked bars. Appl Phys Lett 106(15):151601CrossRefGoogle Scholar
  6. 6.
    Ji JK, Kim GH, Seong WM (2010) Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line. IEEE Antenn Wirel Pr 9(1):36–39CrossRefGoogle Scholar
  7. 7.
    Volakis JL, Sertel K (2011) Narrowband and wideband metamaterial antennas based on degenerate band edge and magnetic photonic crystals. P. IEEE 99(10):1732–1745CrossRefGoogle Scholar
  8. 8.
    Soric JC, Engheta N, Maci S, Alu A (2013) Omnidirectional metamaterial antennas based on ε -near-zero channel matching. IEEE T Antenn Propag 61(1):33–44CrossRefGoogle Scholar
  9. 9.
    Lin XQ, Cui TJ, Chin JY, Yang XM, Cheng Q, Liu RP (2008) Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens. Appl Phys Lett 92(13):4184Google Scholar
  10. 10.
    Savin A, Steigmann R, Bruma A, Šturm R (2015) An electromagnetic sensor with a metamaterial lens for nondestructive evaluation of composite materials. Sensors 15(7):15903–15920CrossRefGoogle Scholar
  11. 11.
    Pu TL, Huang KM, Wang B, Yang Y (2010) Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens. J Electromagnet Wave 24(8–9):1207–1217CrossRefGoogle Scholar
  12. 12.
    Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD (2010) A dual band terahertz metamaterial absorber. J Phys D Appl Phys 43(22):225102CrossRefGoogle Scholar
  13. 13.
    Ding F, Cui Y, Ge X, Jin Y, He S (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100(10):103506–103506–4Google Scholar
  14. 14.
    Wakatsuchi H, Greedy S, Christopoulos C, Paul J (2010) Customised broadband metamaterial absorbers for arbitrary polarization. Opt Express 18(21):22187–22198CrossRefGoogle Scholar
  15. 15.
    Zhao J, Cheng Q, Chen J, Qi MQ, Jiang WX, Cui TJ (2013) A tunable metamaterial absorber using varactor diodes. New J Phys 15(4):043049CrossRefGoogle Scholar
  16. 16.
    Shrekenhamer D, Chen WC, Padilla WJ (2013) Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110(17):177403CrossRefGoogle Scholar
  17. 17.
    Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) Frequency continuous tunable terahertz metamaterial absorber. J Lightwave Technol 32(6):1183–1189CrossRefGoogle Scholar
  18. 18.
    Wen QY, Zhang HW, Yang QH, Chen Z, Long Y, Jing YL, Lin Y, Zhang PX (2012) A tunable hybrid metamaterial absorber based on vanadium oxide films. J Phys D Appl Phys 45(23):235106–235110(5)CrossRefGoogle Scholar
  19. 19.
    Liu ZM, Li Y, Zhang J, Huang YQ, Li ZP, Pei JH, Fang BY, Wang XH, Xiao X (2017) A tunable metamaterial absorber based on VO2/W multilayer structure. IEEE Photonic Tech Lett PP(99):1–1Google Scholar
  20. 20.
    Kats MA, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash MM, Basov DN, Ramanathan S, Capasso F (2012) Ultra-thin perfect absorber employing a tunable phase change material. Appl Phys Lett 101(22):273-RCrossRefGoogle Scholar
  21. 21.
    Tian X, Li Z (2017) An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide. Plasmonics 13(4):1393–1402CrossRefGoogle Scholar
  22. 22.
    Peng H, Ji C, Lu L, Li Z, Li H, Wang J, Wu Z, Jiang Y, Xu J, Liu Z (2017) Broadband planar multilayered absorbers tuned by VO2 phase transition. J Appl Phys 122(5):053106CrossRefGoogle Scholar
  23. 23.
    Chen YJ, Li X, Luo XG, Maier SA, Hong MH (2015) Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photonics Res 3(3):54–57CrossRefGoogle Scholar
  24. 24.
    Tian X, Li ZY (2016) Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photonics Res 4(4):146CrossRefGoogle Scholar
  25. 25.
    Liu Z, Zhao M, Gao J, Li Y, Jiang S (2017) Thermally tunable broadband omnidirectional and polarization-independent super absorber using phase change material VO2. Results Phys 7:4222–4225CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Huang QP, Cai HL, Lin XX, Lua YL (2018) A broadband and switchable VO2-based perfect absorber at the THz frequency. Opt Commun 426:443–449CrossRefGoogle Scholar
  27. 27.
    Feng Q, Pu MB, Hu CG, Luo XG (2012) Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett 37(11):2133–2135CrossRefGoogle Scholar
  28. 28.
    Guo YH, Yan LS, Pan W, Luo B, Luo XG (2014) Ultra-broadband terahertz absorbers based on 4× 4 cascaded metal-dielectric pairs. Plasmonics 9(4):951–957CrossRefGoogle Scholar
  29. 29.
    Pu MB, Hu CG, Wang M, Huang C, Zhao ZY, Wang CT, Feng Q, Luo XG (2011) Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express 19(18):17413–17420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.National Electronic Science and Technology Experimental Teaching Demonstrating CenterNanjing University of Posts and TelecommunicationsNanjingChina
  3. 3.National Information and Electronic Technology Virtual Simulation Experiment Teaching CenterNanjing University of Posts and TelecommunicationsNanjingChina
  4. 4.School of Mathematical SciencesNanjing Normal UniversityNanjingChina
  5. 5.State Key Laboratory of Millimeter Waves of Southeast UniversityNanjingChina

Personalised recommendations