Advertisement

Plasmonics

pp 1–11 | Cite as

Graphene Nanoribbon Assisted Refractometer Based Biosensor for Mid-Infrared Label-Free Analysis

  • Alireza Tavousi
  • Mohammad Ali Mansouri-BirjandiEmail author
  • Morteza Janfaza
Article
  • 18 Downloads

Abstract

In this paper, an enhanced Fabry-Perot resonator (FPR)-based refractometer sensor is proposed using graphene nanoribbon (GNR) material to enable mid-infrared application. The FPR section consists of a three vertically aligned GNR sections: a conventional basic section placed in the middle complemented with two ending tail arms for auxiliary enhancement. To enable a real-world application of sensor, three-dimensional (3D) finite difference time domain (FDTD) simulations are performed. To apply dynamic gate bias tuning, the GNR layer is isolated from the substrate by means of a 50-nm layer of silicon dioxide (SiO2), which is placed on top of a thick bulk silicon (Si). To realize sensing application for the proposed enhanced FPR, a container is placed on FPR. Refractive index sensitivity of the sensor is calculated to be in the range of 3180–4220 nm RIU−1. To compare the superior performance of the sensor, a figure of merit (FOM) is defined and extensively investigated. The FOM of proposed sensor is found to be around 2.9–3.1 RIU−1, which is a reasonable value compared to compact-sized on-chip-intended sensors. Moreover, methods of dynamic variation of resonance wavelength are discussed, which can be useful for multi-analytic applications using spectral multiplexing of the sensor. The small footprint and its single- or multi-sensing application suggest that this enhanced FPR-assisted biosensor can be used as a lab-on-a-chip sensor for a label-free analysis.

Keywords

Graphene nanoribbon Biosensor Label-free analysis Surface plasmon 

Notes

References

  1. 1.
    Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5(7):591–596CrossRefGoogle Scholar
  2. 2.
    Kataoka-Hamai C, Miyahara Y (2011) Label-free detection of DNA by field-effect devices. IEEE Sensors J 11(12):3153–3160CrossRefGoogle Scholar
  3. 3.
    Rakhshani MR, Mansouri-Birjandi MA (2017) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12(4):999–1006CrossRefGoogle Scholar
  4. 4.
    Guiducci C, Stagni C, Fischetti A, Mastromatteo U, Benini L, Riccoricco B (2006) Microelectrodes on a silicon chip for label-free capacitive DNA sensing. IEEE Sensors J 6(5):1084–1093CrossRefGoogle Scholar
  5. 5.
    Hunt HK, Armani AM (2010) Label-free biological and chemical sensors. Nanoscale 2(9):1544–1559CrossRefGoogle Scholar
  6. 6.
    Dissanayake KPW, Wu W, Nguyen H, Sun T, Grattan KT (2018) Graphene-oxide-coated long-period grating-based fiber optic sensor for relative humidity and external refractive index. J Lightwave Technol 36(4):1145–1151CrossRefGoogle Scholar
  7. 7.
    Tavousi A, Heidarzadeh H (2018) Realization of a multichannel drop filter using an ISO-centric all-circular photonic crystal ring resonator. Photonics Nanostruct Fundam Appl 31:52–59CrossRefGoogle Scholar
  8. 8.
    Zhuo Y, Cunningham BT (2015) Label-free biosensor imaging on photonic crystal surfaces. Sensors 15(9):21613–21635CrossRefGoogle Scholar
  9. 9.
    Tavousi A, Mansouri-Birjandi MA (2016) Study on the similarity of photonic crystal ring resonator cavity modes and whispering-gallery-like modes in order to design more efficient optical power dividers. Photon Netw Commun 32(1):160–170CrossRefGoogle Scholar
  10. 10.
    Chow E, Grot A, Mirkarimi L, Sigalas M, Girolami G (2004) Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt Lett 29(10):1093–1095CrossRefGoogle Scholar
  11. 11.
    Tavousi A, Rakhshani M, Mansouri-Birjandi M (2018) High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt Commun 429:166–174CrossRefGoogle Scholar
  12. 12.
    Densmore A, Xu DX, Waldron P, Janz S, Cheben P, Lapointe J, Delge A, Lamontagne B, Schmid JH, Post E (2006) A silicon-on-insulator photonic wire based evanescent field sensor. IEEE Photon Technol Lett 18(23):2520–2522CrossRefGoogle Scholar
  13. 13.
    Philip-Chandy R, Scully PJ, Eldridge P, Kadim HJ, Grapin MG, Jonca MG, D’Ambrosio MG, Colin F (2000) An optical fiber sensor for biofilm measurement using intensity modulation and image analysis. IEEE J Sel Top Quantum Electron 6(5):764–772CrossRefGoogle Scholar
  14. 14.
    Mishra AK, Mishra SK, Singh AP (2017) Giant infrared sensitivity of surface plasmon resonance-based refractive index sensor, Plasmonics, pp. 1–8Google Scholar
  15. 15.
    Tavousi A, Mansouri-Birjandi MA, Ghadrdan M, Ranjbar-Torkamani M (2017) Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering. Photon Netw Commun 34(1):131–139CrossRefGoogle Scholar
  16. 16.
    Wang F, Anderson M, Bernards MT, Hunt HK (2015) Peg functionalization of whispering gallery mode optical microresonator biosensors to minimize non-specific adsorption during targeted, label-free sensing. Sensors 15(8):18040–18060CrossRefGoogle Scholar
  17. 17.
    Reynolds T, François A, Riesen N, Turvey ME, Nicholls SJ, Hoffmann P, Monro TM (2016) Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum. Anal Chem 88(7):4036–4040CrossRefGoogle Scholar
  18. 18.
    Al-Attili AZ et al (2015) Whispering gallery mode resonances from Ge micro-disks on suspended beams. Front Mater 2:43CrossRefGoogle Scholar
  19. 19.
    Tavousi A, Mansouri-Birjandi MA (2015) Performance evaluation of photonic crystal ring resonators based optical channel add-drop filters with the aid of whispering gallery modes and their Q-factor. Opt Quant Electron 47(7):1613–1625CrossRefGoogle Scholar
  20. 20.
    Ahmadi H, Heidarzadeh H, Taghipour A, Rostami A, Baghban H, Dolatyari M, Rostami G (2014) Evaluation of single virus detection through optical biosensor based on microsphere resonator. Optik 125(14):3599–3602CrossRefGoogle Scholar
  21. 21.
    Ladam G, Schaad P, Voegel J, Schaaf P, Decher G, Cuisinier F (2000) In situ determination of the structural properties of initially deposited polyelectrolyte multilayers. Langmuir 16(3):1249–1255CrossRefGoogle Scholar
  22. 22.
    Tünnemann R, Mehlmann M, Süssmuth RD, Bühler B, Pelzer S, Wohlleben W, Fiedler HP, Wiesmüller KH, Gauglitz G, Jung G (2001) Optical biosensors. Monitoring studies of glycopeptide antibiotic fermentation using white light interference. Anal Chem 73(17):4313–4318CrossRefGoogle Scholar
  23. 23.
    Chang K, Chen R, Wang S, Li J, Hu X, Liang H, Cao B, Sun X, Ma L, Zhu J, Jiang M, Hu J (2015) Considerations on circuit design and data acquisition of a portable surface plasmon resonance biosensing system. Sensors 15(8):20511–20523CrossRefGoogle Scholar
  24. 24.
    Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304CrossRefGoogle Scholar
  25. 25.
    Tu H, Sun T, Grattan KT (2013) SPR-based optical fiber sensors using gold–silver alloy particles as the active sensing material. IEEE Sensors J 13(6):2192–2199CrossRefGoogle Scholar
  26. 26.
    Slavík R, Homola J (2007) Ultrahigh resolution long range surface plasmon-based sensor. Sensors Actuators B Chem 123(1):10–12CrossRefGoogle Scholar
  27. 27.
    Chamanzar M, Soltani M, Momeni B, Yegnanarayanan S, Adibi A (2010) Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications. Appl Phys B 101(1–2):263–271CrossRefGoogle Scholar
  28. 28.
    Wohltjen H et al. (1997) Acoustic wave sensor—theory, design, and physico-chemical applications, Academic, New YorkGoogle Scholar
  29. 29.
    Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519CrossRefGoogle Scholar
  30. 30.
    Wu L, Jia Y, Jiang L, Guo J, Dai X, Xiang Y, Fan D (2017) Sensitivity improved SPR biosensor based on the mos 2/graphene–aluminum hybrid structure. J Lightwave Technol 35(1):82–87CrossRefGoogle Scholar
  31. 31.
    Mishra AK, Mishra SK, Verma RK (2016) Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J Phys Chem C 120(5):2893–2900CrossRefGoogle Scholar
  32. 32.
    Mirzaei Y, Rostami G, Dolatyari M, Rostami A (2015) Investigation of efficient mathematical permittivity modeling for modal analysis of plasmonics layered structures. Optik 126(3):323–327CrossRefGoogle Scholar
  33. 33.
    Tavousi A, Rostami A, Rostami G, Dolatyari M (2015) 3-D numerical analysis of Smith–Purcell-based terahertz wave radiation excited by effective surface plasmon. J Lightwave Technol 33(22):4640–4647CrossRefGoogle Scholar
  34. 34.
    Fischer B, Walther M, Jepsen PU (2002) Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys Med Biol 47(21):3807–3814CrossRefGoogle Scholar
  35. 35.
    Zangeneh-Nejad F, Safian R (2016) A graphene-based THz ring resonator for label-free sensing. IEEE Sensors J 16(11):4338–4344CrossRefGoogle Scholar
  36. 36.
    Tavousi A, Rostami A, Rostami G, Dolatyari M (2017) Proposal for simultaneous two-color Smith–Purcell terahertz radiation through effective surface plasmon excitation. IEEE J Sel Top Quantum Electron 23(4):1–9CrossRefGoogle Scholar
  37. 37.
    Wang K, Mittleman DM (2004) Metal wires for terahertz wave guiding. Nature 432(7015):376–379CrossRefGoogle Scholar
  38. 38.
    Gu X, Lin I-T, Liu J-M (2013) Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures. Appl Phys Lett 103(7):071103CrossRefGoogle Scholar
  39. 39.
    Maier SA, Andrews SR, Martin-Moreno L, Garcia-Vidal F (2006) Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97(17):176805CrossRefGoogle Scholar
  40. 40.
    Riedl C, Coletti C, Starke U (2010) Structural and electronic properties of epitaxial graphene on SiC (0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. J Phys D Appl Phys 43(37):374009CrossRefGoogle Scholar
  41. 41.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294CrossRefGoogle Scholar
  42. 42.
    Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2):1086–1101CrossRefGoogle Scholar
  43. 43.
    Tamagnone M, Gomez-Diaz J, Mosig J, Perruisseau-Carrier J (2012) Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. J Appl Phys 112(11):114915CrossRefGoogle Scholar
  44. 44.
    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FH, García de Abajo FJ (2011) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440CrossRefGoogle Scholar
  45. 45.
    Raza H (2012) Graphene nanoelectronics: metrology, synthesis, properties and applications. Springer Science & Business MediaGoogle Scholar
  46. 46.
    Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302CrossRefGoogle Scholar
  47. 47.
    Siahsar M, Dolatyari M, Rostami A, Rostami G (2017) Surface-modified graphene for mid-infrared detection, in Graphene Materials-Advanced Applications: InTechGoogle Scholar
  48. 48.
    Asgari S, Granpayeh N (2017) Tunable plasmonic dual wavelength multi/demultiplexer based on graphene sheets and cylindrical resonator. Opt Commun 393:5–10CrossRefGoogle Scholar
  49. 49.
    Asgari S, Dolatabady A, Granpayeh N (2017) Tunable midinfrared wavelength selective structures based on resonator with antisymmetric parallel graphene pair. Opt Eng 56(6):067102–067102CrossRefGoogle Scholar
  50. 50.
    Tavousi A, Mansouri-Birjandi MA, Janfaza M (2018) Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering. Appl Opt 57(20):5800–5805CrossRefGoogle Scholar
  51. 51.
    Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Neto AHC, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405):82–85CrossRefGoogle Scholar
  52. 52.
    Janfaza M, Mansouri-Birjandi MA, Tavousi A (2017) Tunable plasmonic band-pass filter based on Fabry–Perot graphene nanoribbons. Appl Phys B 123(10):262CrossRefGoogle Scholar
  53. 53.
    Janfaza M, Mansouri-Birjandi MA, Tavousi A (2018) Tunable plasmon-induced reflection based on graphene nanoribbon Fabry-Perot resonator and nanodisks. Opt Mater 84:675–680CrossRefGoogle Scholar
  54. 54.
    Janfaza M, Mansouri-Birjandi MA, Tavousi A (2018) Dynamic switching between single and double plasmon induced reflection through graphene nanoribbons based structure. Mater Res Express 5(11):115022CrossRefGoogle Scholar
  55. 55.
    Tavousi A, Mansouri-Birjandi MA, Janfaza M (2018) Tuning contrivances of graphene Nano-ribbon based mid-infrared band-pass filter, Electrical Engineering (ICEE), Iranian Conference on, Mashhad, pp. 220–223.doi:  https://doi.org/10.1109/ICEE.2018.8472719
  56. 56.
    Qi Z-M, Wei M, Matsuda H, Honma I, Zhou H (2007) Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films. Appl Phys Lett 90(18):181112CrossRefGoogle Scholar
  57. 57.
    Zangeneh-Nejad F, Safian R (2016) Hybrid graphene–molybdenum disulphide based ring resonator for label-free sensing. Opt Commun 371:9–14CrossRefGoogle Scholar
  58. 58.
    Ren M, Pan C, Li Q, Cai W, Zhang X, Wu Q, Fan S, Xu J (2013) Isotropic spiral plasmonic metamaterial for sensing large refractive index change. Opt Lett 38(16):3133–3136CrossRefGoogle Scholar
  59. 59.
    Zafar R, Salim M (2015) Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sensors J 15(11):6313–6317CrossRefGoogle Scholar
  60. 60.
    Dolatabady A, Granpayeh N, Nezhad VF (2013) A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator. Opt Commun 300:265–268CrossRefGoogle Scholar
  61. 61.
    Rakhshani MR, Tavousi A, Mansouri-Birjandi MA (2018) Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl Opt 57(27):7798–7804CrossRefGoogle Scholar
  62. 62.
    Cong L, Tan S, Yahiaoui R, Yan F, Zhang W, Singh R (2015) Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl Phys Lett 106(3):031107CrossRefGoogle Scholar
  63. 63.
    Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6(9):2060–2065CrossRefGoogle Scholar
  64. 64.
    Slavík R, Homola J, Čtyroký J, Brynda E (2001) Novel spectral fiber optic sensor based on surface plasmon resonance. Sensors Actuators B Chem 74(1):106–111CrossRefGoogle Scholar
  65. 65.
    Cao W, Singh R, Al-Naib IA, He M, Taylor AJ, Zhang W (2012) Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt Lett 37(16):3366–3368CrossRefGoogle Scholar
  66. 66.
    Krioukov E, Klunder D, Driessen A, Greve J, Otto C (2002) Sensor based on an integrated optical microcavity. Opt Lett 27(7):512–514CrossRefGoogle Scholar
  67. 67.
    Yalcin A, Popat KC, Aldridge JC, Desai TA, Hryniewicz J, Chbouki N, Little BE, Oliver King, van V, Sai Chu, Gill D, Anthes-Washburn M, Unlu MS, Goldberg BB (2006) Optical sensing of biomolecules using microring resonators. IEEE J Sel Top Quantum Electron 12(1):148–155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alireza Tavousi
    • 1
  • Mohammad Ali Mansouri-Birjandi
    • 2
    Email author
  • Morteza Janfaza
    • 2
  1. 1.Department of Electrical EngineeringVelayat UniversityIranshahrIran
  2. 2.Faculty of Electrical and Computer EngineeringUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations