pp 1–6 | Cite as

Resonant Enhancement of THz Radiation Through Vertically Aligned Carbon Nanotubes Array by Applying Wiggler Magnetic Field

  • Shivani Vij
  • Niti Kant
  • Vishal ThakurEmail author


The present analysis develops a novel theory of terahertz radiation generation by beating of two laser beams, incident obliquely on the array of vertically aligned carbon nanotubes (CNTs) in the presence of an external wiggler magnetic field. The array of CNTs behaves as nanoantenna to generate THz radiations. The incident lasers exert a ponderomotive force on the electrons of the CNTs to produce nonlinear oscillatory velocity, which beats with the applied wiggler magnetic field. This beating produces a nonlinear current at (ω2 − ω1, k2 − k1 + k0) which acts as an antenna to produce the THz radiation. We observe that when the beat frequency (ω2 − ω1) lies near the effective plasmon frequency of the CNTs, strong THz radiation is produced due to a resonant interaction of the laser with CNT electrons. The externally applied wiggler magnetic field enhances the efficiency of THz radiation of nanoantenna by providing the necessary momentum to the generated THz radiation. We explore the impact of radius and length of nanotubes on the efficiency of THz generation. The generated THz power is enhanced at an optimum angle of incidence of lasers with an array of CNTs.


THz radiation Carbon nanotubes Antenna theory Plasma Wiggler magnetic field Nanotechnology 


Funding Information

The present work was supported by a financial grant from CSIR, New Delhi, India, under Project No. 03(1438)/18/EMR-II.


  1. 1.
    Saito R, Dresselhaus G, Dresselhaus MS (2000) Imperial College Press, London, vol 76, p 241Google Scholar
  2. 2.
    Dresselhaus MS, Dresselhaus G, Avouris P (eds) (2008) Springer-Verlag, Berlin, vol 11, p 57Google Scholar
  3. 3.
    Orenstein J, Millis AJ (2000) Science 288:468CrossRefGoogle Scholar
  4. 4.
    Ferguson B, Zhang X-C (2002) Nat Mater 1:26CrossRefGoogle Scholar
  5. 5.
    Siegel PH (2004) IEEE Trans Microwave Theory Tech 52:2438CrossRefGoogle Scholar
  6. 6.
    Fitch MJ, Osiander R (2004) J Hopkins APL Tech Dig 25:348Google Scholar
  7. 7.
    Shen YC, Lo T, Taday PF, Cole BE, Tribe WR, Kemp MC (2005) Appl Phys Lett 86:241116CrossRefGoogle Scholar
  8. 8.
    Welsh GH, Wyne K (2009) Opt Express 17:2470CrossRefGoogle Scholar
  9. 9.
    Garwe F, Schmidt A, Zieger G, May T, Wyne K, Hubner U, Zeisberger M, Paa W, Stafast H, Meyer HG (2011) Appl Phys B 102:551CrossRefGoogle Scholar
  10. 10.
    Dragoman D, Dragoman M (2004) Phys E 24:282CrossRefGoogle Scholar
  11. 11.
    Parashar J, Sharma H (2012) Phys E 44:2069CrossRefGoogle Scholar
  12. 12.
    Jain S, Parasher J, Kurchania R (2013) Int Nano Lett 3:1CrossRefGoogle Scholar
  13. 13.
    Javan NS, Erdi FR (2017) J Appl Phys 122:223103CrossRefGoogle Scholar
  14. 14.
    Sharma S, Vijay A (2018) Am Inst Phys 25:023114Google Scholar
  15. 15.
    Giannini V, Vecchi G, Rivas JG (2010) Phys Rev Lett 105:266801CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied SciencesDAV Institute of Engineering & TechnologyJalandharIndia
  2. 2.Department of PhysicsLovely Professional UniversityPhagwaraIndia

Personalised recommendations