Advertisement

Plasmonics

pp 1–9 | Cite as

Efficiency Enhancement of an Ultra-Thin Silicon Solar Cell Using Plasmonic Coupled Core-Shell Nanoparticles

  • Gholamali Mokari
  • Hamid Heidarzadeh
Article
  • 34 Downloads

Abstract

Enhancement of the optical absorption in ultra-thin silicon solar cells is more important. In this work, plasmonic nanostructures are used inside the active layer to improve the absorption and hence photocurrent of a thin silicon solar cell. The main objective is to design a high efficiency solar cell using embedded two or three coupled nanoparticles. Finite difference time domain (FDTD) method is used to simulate the proposed structures. Some optimization like position, distance, and radiuses of nanoparticles is done. The effects of embedded coupled nanoparticles are compared with a case of one embedded nanoparticle. The obtained results indicated that coupled nanoparticles significantly improve the cell performance. For instance, the optical current for a cell with two coupled nanoparticles is 33.53 mA/cm2 and that is 34.49 mA/cm2 for a cell with three embedded coupled nanoparticles. It is important to mention that the optical currents are 31.74 mA/cm2 and 20.11 mA/cm2 for the cells with one nanoparticle and without nanoparticles, respectively. Finally, to further enhancement, a titanium oxide core with different radiuses inside silver nanoparticles is considered. Titanium oxide cores reduce the absorption inside the metal and hence increase the optical absorption and photocurrent.

Keywords

Plasmonic solar cell Coupled nanoparticles Light trapping Nanoparticles Core-shell Thin film Efficiency 

Notes

References

  1. 1.
    Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev 4(2):157–175CrossRefGoogle Scholar
  2. 2.
    Lewis N-S (2007) Toward cost-effective solar energy use. science 315(5813):798–801CrossRefGoogle Scholar
  3. 3.
    Heidarzadeh H, Baghban H, Rasooli H, Dolatyari M, Rostami A (2014) A new proposal for Si tandem solar cell: significant efficiency enhancement in 3C–SiC/Si. Optik 125(3):1292–1296CrossRefGoogle Scholar
  4. 4.
    Rostami A, Heidarzadeh H, Baghban H, Dolatyari M, Rasooli H (2013) Thermal stability analysis of concentrating single-junction silicon and SiC-based solar cells. J Optoelectron Adv Mater 15(1–2):1–3Google Scholar
  5. 5.
    Heidarzadeh H, Rostami A, Dolatyari M, Rostami G (2014) Efficiency analysis and electronic structures of 3C-SiC and 6H-SiC with 3d elements impurities as intermediate band photovoltaics. J Photonics Energy 4(1):042098CrossRefGoogle Scholar
  6. 6.
    Lindholm F-A, Fossum J-G, Burgess E-L (1979) Application of the superposition principle to solar-cell analysis. IEEE Trans Electron Devices 26(3):165–171CrossRefGoogle Scholar
  7. 7.
    Aberle A-G (2009) Thin-film solar cells. Thin Solid Films 517(17):4706–4710CrossRefGoogle Scholar
  8. 8.
    Contreras M-A, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F, Noufi R (1999) Progress toward 20% efficiency in cu (in, Ga) Se2 polycrystalline thin-film solar cells. Prog Photovolt Res Appl 7(4):311–316CrossRefGoogle Scholar
  9. 9.
    Chopra KL, Paulson PD, Dutta V (2004) Thin-film solar cells: an overview. Prog Photovolt Res Appl 12(2–3):69–92CrossRefGoogle Scholar
  10. 10.
    Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17(3):183–189CrossRefGoogle Scholar
  11. 11.
    Heidarzadeh H, Rostami A, Matloub S, Dolatyari M, Rostami G (2015) Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement. Appl Opt 54(12):3591–3601CrossRefGoogle Scholar
  12. 12.
    Trompoukis C, Abdo I, Cariou R, Cosme I, Chen W, Deparis O, Dmitriev A, Drouard E, Foldyna M, Caurel EG, Gordon I (2015) Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells. Phys Status Solidi A 212(1):140–155CrossRefGoogle Scholar
  13. 13.
    Heidarzadeh H, Dolatyari M, Rostami G, Rostami A (2015) Modeling of solar cell efficiency improvement using pyramid grating in single junction silicon solar cell. In 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014). Springer, Cham, pp 61-67Google Scholar
  14. 14.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213CrossRefGoogle Scholar
  15. 15.
    Singh HK, Mondal S, Arunachalam B, Soman A, Sharma P, Solanki CS (2018) DMD Plasmonic anti-reflector for next-generation thin c-Si solar cell applications. Plasmonics 13(2):705–714CrossRefGoogle Scholar
  16. 16.
    Ren R, Zhong Z (2018) Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector. Opt Commun 417:110–114CrossRefGoogle Scholar
  17. 17.
    Yan W, Huang Y, Wang L, Vüllers F, Kavalenka MN, Hölscher H, Dottermusch S, Richards BS, Klampaftis E (2018) Photocurrent enhancement for ultrathin crystalline silicon solar cells via a bioinspired polymeric nanofur film with high forward scattering. Sol Energy Mater Sol Cells 186:105–110CrossRefGoogle Scholar
  18. 18.
    YLiu Y, Zi W, Liu SF, Yan B (2015) Effective light trapping by hybrid nanostructure for crystalline silicon solar cells. Sol Energy Mater Sol Cells 140:180–186CrossRefGoogle Scholar
  19. 19.
    Mendes MJ, Morawiec S, Mateus T, Lyubchyk A, Águas H, Ferreira I, Fortunato E, Martins R, Priolo F, Crupi I (2015) Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids. Nanotechnology 26(13):135202CrossRefGoogle Scholar
  20. 20.
    Heidarzadeh H, Rostami A, Dolatyari M, Rostami G (2016) Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating. Appl Opt 55(7):1779–1785CrossRefGoogle Scholar
  21. 21.
    Khalifa AE, Swillam MA (2014) Plasmonic silicon solar cells using titanium nitride: a comparative study. J Nanophoton 8(1):084098CrossRefGoogle Scholar
  22. 22.
    Catchpole KA, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793–21800CrossRefGoogle Scholar
  23. 23.
    Ferry VE, Verschuuren MA, Li HB, Verhagen E, Walters RJ, Schropp RE, Atwater HA, Polman A (2010) Light trapping in ultrathin plasmonic solar cells. Opt Express 18(102):A237–A245CrossRefGoogle Scholar
  24. 24.
    Heidarzadeh H (2018) Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell. Mater Res Express 5(3):036208CrossRefGoogle Scholar
  25. 25.
    Beck FJ, Polman A, Catchpole KR (2009) Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys 105(11):114310CrossRefGoogle Scholar
  26. 26.
    Qiao L, Wang D, Zuo L, Ye Y, Qian J, Chen H, He S (2011) Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres. Appl Energy 88(3):848–852CrossRefGoogle Scholar
  27. 27.
    Heidarzadeh H, Mehrfar F (2018) Effect of size non-uniformity on performance of a Plasmonic perovskite solar cell: an Array of embedded Plasmonic nanoparticles with the Gaussian distribution radiuses. Plasmonics:1–8Google Scholar
  28. 28.
    Hooshmand N, Panikkanvalappil SR, El-Sayed MA (2016) Effects of the substrate refractive index, the exciting light propagation direction, and the relative cube orientation on the Plasmonic coupling behavior of two silver Nanocubes at different separations. J Phys Chem C 120(37):20896–20904CrossRefGoogle Scholar
  29. 29.
    Kim JY, Kim H, Kim BH, Chang T, Lim J, Jin HM, Mun JH, Choi YJ, Chung K, Shin J, Fan S (2016) Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nat Commun 7:12911CrossRefGoogle Scholar
  30. 30.
    Mandal P, Sharma S (2016) Progress in plasmonic solar cell efficiency improvement: a status review. Renew Sust Energ Rev 65:537–552CrossRefGoogle Scholar
  31. 31.
    Yao K, Salvador M, Chueh CC, Xin XK, Xu YX, Dequilettes DW, Hu T, Chen Y, Ginger DS, Jen AK (2014) A general route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv Energy Mater 4(9):1400206CrossRefGoogle Scholar
  32. 32.
    Deka N, Islam M, Sarswat PK, Kumar G (2018) Enhancing solar cell efficiency with plasmonic behavior of double metal nanoparticle system. Vacuum 152:285–290CrossRefGoogle Scholar
  33. 33.
    Edalati S, Behjat A, Torabi N (2018) Near-field effect of ag@ SnO 2 Core-Shell on dye-sensitized solar cell performance. Plasmonics:1–5Google Scholar
  34. 34.
    Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8(2):95–103CrossRefGoogle Scholar
  35. 35.
    Li J, Cushing SK, Meng F, Senty TR, Bristow AD, Wu N (2015) Plasmon-induced resonance energy transfer for solar energy conversion. Nat Photonics 9(9):601–607CrossRefGoogle Scholar
  36. 36.
    Wang W, Wu S, Reinhardt K, Lu Y, Chen S (2010) Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett 10(6):2012–2018CrossRefGoogle Scholar
  37. 37.
    Xiao S, Stassen E, Mortensen NA (2012) Ultrathin silicon solar cells with enhanced photocurrents assisted by plasmonic nanostructures. J Nanophoton 6(1):061503CrossRefGoogle Scholar
  38. 38.
    Sabaeian M, Heydari M, Ajamgard N (2015) Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section. AIP Adv 5(8):087126CrossRefGoogle Scholar
  39. 39.
    Abass A, Le KQ, Alu A, Burgelman M, Maes B (2012) Dual-interface gratings for broadband absorption enhancement in thin-film solar cells. Phys Rev B 85(11):115449CrossRefGoogle Scholar
  40. 40.
    Shen H, Maes B (2011) Combined plasmonic gratings in organic solar cells. Opt Express 19(106):A1202–A1210CrossRefGoogle Scholar
  41. 41.
    Kravets VG, Schedin F, Grigorenko AN (2008) Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett 101(8):087403CrossRefGoogle Scholar
  42. 42.
    Dirix Y, Bastiaansen C, Caseri W, Smith P (1999) Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters. Adv Mater 11(3):223–227CrossRefGoogle Scholar
  43. 43.
    Gopinath A, Boriskina SV, Reinhard BM, Dal Negro L (2009) Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). Opt Express 17(5):3741–3753CrossRefGoogle Scholar
  44. 44.
    Shim JP, Choi SB, Kong DJ, Seo DJ, Kim HJ, Lee DS (2016) Ag nanoparticles-embedded surface plasmonic InGaN-based solar cells via scattering and localized field enhancement. Opt Express 24(14):A1176–A1187CrossRefGoogle Scholar
  45. 45.
    Nasser H, Saleh ZM, Özkol E, Günoven M, Bek A, Turan R (2013) Fabrication of Ag nanoparticles embedded in Al: ZnO as potential light-trapping plasmonic interface for thin film solar cells. Plasmonics 8(3):1485–1492CrossRefGoogle Scholar
  46. 46.
    Arinze ES, Qiu B, Nyirjesy G, Thon SM (2016) Plasmonic nanoparticle enhancement of solution-processed solar cells: practical limits and opportunities. Acs Photon 3(2):158–173CrossRefGoogle Scholar
  47. 47.
    Smith DY, Shiles E, Inokuti M, Palik ED (1985) Handbook of optical constants of solids. Handb Opt Constants Solids 1:369–406CrossRefGoogle Scholar
  48. 48.
    Ginsburg A, Priel M, Barad HN, Keller DA, Borvick E, Rietwyk K, Kama A, Meir S, Anderson AY, Zaban A (2018) Solid state ITO| Au-NPs| TiO2 plasmonic based solar cells. Sol Energy Mater Sol Cells 179:254–259CrossRefGoogle Scholar
  49. 49.
    Zhang Y, Yang G (2018) Enhanced plasmonic light absorption on silicon solar cells: the case of silver (Ag) grid-indium tin oxide (ITO) composite front electrode. J Alloys Compd 769:311–315CrossRefGoogle Scholar
  50. 50.
    Yue Z, Cai B, Wang L, Wang X, Gu M (2016) Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index. Sci Adv 2(3):e1501536CrossRefGoogle Scholar
  51. 51.
    Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16(4):133–146CrossRefGoogle Scholar
  52. 52.
    Lumerical FD. Solutions is a finite-difference time-domain software package for performing electromagnetic simulations. See Lumerical Solutions. Inc., http://www.lumerical.com
  53. 53.
    Jaberansary E, Masaud TM, Milosevic MM, Nedeljkovic M, Mashanovich GZ, Chong HM (2013) Scattering loss estimation using 2-D Fourier analysis and modeling of sidewall roughness on optical waveguides. IEEE Photon J 5(3):6601010CrossRefGoogle Scholar
  54. 54.
    Selmy AE, Soliman M, Allam NK (2018) Refractory plasmonics boost the performance of thin-film solar cells. Emerg Mater:1–7Google Scholar
  55. 55.
    Janfaza M, Mansouri-Birjandi MA, Tavousi A (2018) Tunable plasmon-induced reflection based on graphene nanoribbon Fabry-Perot resonator and nanodisks. Opt Mater 84:675–680CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Stokes N, Jia B, Fan S, Gu M (2014) Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci Rep 4:4939CrossRefGoogle Scholar
  57. 57.
    Foroutan S, Rostami G, Dolatyari M, Rostami A (2016) Improvement of the conversion efficiency and power of thin film silicon solar cells by embedding metallic nanostructures in depletion region. Optik 127(20):8988–8994CrossRefGoogle Scholar
  58. 58.
    Yu P, Yao Y, Wu J, Niu X, Rogach AL, Wang Z (2017) Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells. Sci Rep 7(1):7696CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics, Tabriz BranchIslamic Azad UniversityTabrizIran
  2. 2.Department of Electrical and Computer EngineeringUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations