Advertisement

Plasmonics

pp 1–10 | Cite as

Influence of the Aptamer Grafting on its Conformation and its Interaction with Targeted Protein

  • Celia Arib
  • Qiqian Liu
  • Nadia Djaker
  • Weiling Fu
  • Marc Lamy de la ChapelleEmail author
  • Jolanda SpadavecchiaEmail author
Article
  • 53 Downloads

Abstract

Aptamers are functional small single-strand oligonucleotides (DNA) that show high affinity to their target molecules such as proteins or small analytes through the formation of specific secondary structures. In the present paper, we study the interaction of one aptamer with its target protein, the manganese superoxide dismutase (MnSOD), under specific conditions of surface chemical grafting. For this purpose, we exploit two different chemical strategies to graft the aptamers onto pegylated gold nanoparticles: the carbodiimide chemistry (EDC/NHS method) and the thiol covalent bond (S–Au bond). We also study the influence of the presence of a spacer of 15 thymine bases at the aptamer extremity. The aptamer interactions with the MnSOD were characterized by UV-Vis absorption on a large range of MnSOD concentrations (from 10−12 up to 10−5 M). We observe that the interaction is strongly dependent on the MnSOD concentration and also on the aptamer structure at the surface of the gold nanoparticles. We demonstrate that the highest affinity is obtained for the aptamer with the 15 thymine bases spacer and grafted with the carbodiimide method. We assume that the grafting method has a strong influence on the accessibility and the conformation of the aptamer at the nanoparticle surface and thus on its possibility to interact with the MnSOD.

Keywords

Surface functionalization Biological interaction Biomarker Nanoparticles Aptamer Plasmon 

Notes

Funding Information

The ANR P2N PIRANEX project (ANR-12-NANO-0016) and the ANR LOUISE project (ANR-15-CE04-0001) financially supported this work. This work has been partly performed on the CNanoMat platform of the University Paris 13.

Supplementary material

11468_2018_890_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1897 kb)

References

  1. 1.
    Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J ChemGoogle Scholar
  2. 2.
    Spadavecchia J, Perumal R, Casale S, Krafft J-M, Methivier C, Pradier C-M (2016) Polyethylene glycol gold-nanoparticles: facile nanostructuration of doxorubicin and its complex with DNA molecules for SERS detection. Chem Phys Lett 648:182–188CrossRefGoogle Scholar
  3. 3.
    Ahmad B, Hafeez N, Bashir S, Rauf A, Mujeeb ur R (2017) Phytofabricated gold nanoparticles and their biomedical applications. Biomed Pharmacother 89:414–425CrossRefGoogle Scholar
  4. 4.
    Zhang R-C, Sun D, Zhang R, Lin W-F, Macias-Montero M, Patel J, Askari S, McDonald C, Mariotti D, Maguire P (2017) Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application. Sci Rep 7:46682CrossRefGoogle Scholar
  5. 5.
    Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193CrossRefGoogle Scholar
  6. 6.
    Huang C-C, Chiu S-H, Huang Y-F, Chang H-T (2007) Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Anal Chem 79:4798–4804CrossRefGoogle Scholar
  7. 7.
    Li F, Li J, Tang Y, Wang C, Li X-F, Le XC (2017) Targeted enlargement of aptamer functionalized gold nanoparticles for quantitative protein analysis. Proteomes 5:1CrossRefGoogle Scholar
  8. 8.
    Zuber A, Purdey M, Schartner E, Forbes C, van der Hoek B, Giles D, Abell A, Monro T, Ebendorff-Heidepriem H (2016) Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sensors Actuators B Chem 227:117–127CrossRefGoogle Scholar
  9. 9.
    Song K-M, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors (Basel, Switzerland) 12:612–631CrossRefGoogle Scholar
  10. 10.
    Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114:1818–1825CrossRefGoogle Scholar
  11. 11.
    Giri K, Shameer K, Zimmermann MT, Saha S, Chakraborty PK, Sharma A, Arvizo RR, Madden BJ, Mccormick DJ, Kocher JPA, Bhattacharya R, Mukherjee P (2014) Understanding protein–nanoparticle interaction: a new gateway to disease therapeutics. Bioconjug Chem 25:1078–1090CrossRefGoogle Scholar
  12. 12.
    Cottat M, D’Andrea C, Yasukuni R, Malashikhina N, Grinyte R, Lidgi-Guigui N, Fazio B, Sutton A, Oudar O, Charnaux N, Pavlov V, Toma A, di Fabrizio E, Gucciardi PG, Lamy de la Chapelle M (2015) High sensitivity, high selectivity SERS detection of MnSOD using optical nanoantennas functionalized with aptamers. J Phys Chem C 119:15532–15540CrossRefGoogle Scholar
  13. 13.
    Borrelli A, Schiattarella A, Bonelli P, Tuccillo FM, Buonaguro FM, Mancini A (2014) The functional role of MnSOD as a biomarker of human diseases and therapeutic potential of a new isoform of a human recombinant MnSOD. Biomed Res Int 2014:476789CrossRefGoogle Scholar
  14. 14.
    David C, d’Andrea C, Lancelot E, Bochterle J, Guillot N, Fazio B, Maragò OM, Sutton A, Charnaux N, Neubrech F, Pucci A, Gucciardi PG, de la Chapelle ML (2012) Raman and IR spectroscopy of manganese superoxide dismutase, a pathology biomarker. Vib Spectrosc 62:50–58CrossRefGoogle Scholar
  15. 15.
    Linhart K, Bartsch H, Seitz HK (2014) The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts. Redox Biol 3:56–62CrossRefGoogle Scholar
  16. 16.
    Robbins D, Zhao Y (2014) Manganese superoxide dismutase in cancer prevention. Antioxid Redox Signal 20:1628–1645CrossRefGoogle Scholar
  17. 17.
    Macdonald TJ, Wu K, Sehmi SK, Noimark S, Peveler WJ, du Toit H, Voelcker NH, Allan E, MacRobert AJ, Gavriilidis A, Parkin IP (2016) Thiol-capped gold nanoparticles swell-encapsulated into polyurethane as powerful antibacterial surfaces under dark and light conditions. Sci Rep 6:39272CrossRefGoogle Scholar
  18. 18.
    Moustaui H, Movia D, Dupont N, Bouchemal N, Casale S, Djaker N, Savarin P, Prina-Mello A, Lamy de la Chapelle M, Spadavecchia J (2016) Tunable design of gold(III)-doxorubicin complex-pegylated nanocarrier. The golde doxorubicin for oncological applications. ACS Appl Mater Interfaces 8:19946–19957CrossRefGoogle Scholar
  19. 19.
    Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-Sensing Res 9:17–22CrossRefGoogle Scholar
  20. 20.
    Thanh NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230CrossRefGoogle Scholar
  21. 21.
    Koneracká M, Kopčanský P, Antalı́k M, Timko M, Ramchand CN, Lobo D, Mehta RV, Upadhyay RV (1999) Immobilization of proteins and enzymes to fine magnetic particles. J Magn Magn Mater 201:427–430CrossRefGoogle Scholar
  22. 22.
    Kammer MN, Olmsted IR, Kussrow AK, Morris MJ, Jackson GW, Bornhop DJ (2014) Characterizing aptamer small molecule interactions with backscattering interferometry. Analyst 139:5879–5884CrossRefGoogle Scholar
  23. 23.
    Spadavecchia J, Apchain E, Alberic M, Fontan E, Reiche I (2014) One-step synthesis of collagen hybrid gold nanoparticles and formation on Egyptian-like gold-plated archaeological ivory. Angew Chem Int Ed Engl 53:8363–8366CrossRefGoogle Scholar
  24. 24.
    Hsu C-L, Lien C-W, Wang C-W, Harroun SG, Huang C-C, Chang H-T (2016) Immobilization of aptamer-modified gold nanoparticles on BiOCl nanosheets: tunable peroxidase-like activity by protein recognition. Biosens Bioelectron 75:181–187CrossRefGoogle Scholar
  25. 25.
    Wang W, Ding X, He M, Wang J, Lou X (2014) Kinetic adsorption profile and conformation evolution at the DNA-gold nanoparticle interface probed by dynamic light scattering. Anal Chem 86:10186–10192CrossRefGoogle Scholar
  26. 26.
    Pagba CV, Lane SM, Cho H, Wachsmann-Hogiu S. Direct detection of aptamer-thrombin binding via surface-enhanced Raman spectroscopy. SPIE 2010. p. 8Google Scholar
  27. 27.
    Pagba CV, Lane SM, Wachsmann-Hogiu S (2011) Conformational changes in quadruplex oligonucleotide structures probed by Raman spectroscopy. Biomed Optics Express 2:207–217CrossRefGoogle Scholar
  28. 28.
    Sun Z, Wang Y, Wei Y, Liu R, Zhu H, Cui Y, Zhao Y, Gao X (2011) Ag cluster-aptamer hybrid: specifically marking the nucleus of live cells. Chem Commun 47:11960–11962CrossRefGoogle Scholar
  29. 29.
    He H, Dai J, Duan Z, Zheng B, Meng Y, Guo Y, Dan Xiao (2016) Unusual sequence length-dependent gold nanoparticles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection. Sci Rep 6:30878CrossRefGoogle Scholar
  30. 30.
    Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernández CE, Swaminathan VN et al (2007) Thymine dimerization in DNA is an ultrafast photoreaction. Science (New York, NY) 315:625–629CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Celia Arib
    • 1
  • Qiqian Liu
    • 1
    • 2
  • Nadia Djaker
    • 1
  • Weiling Fu
    • 2
  • Marc Lamy de la Chapelle
    • 2
    • 3
    Email author
  • Jolanda Spadavecchia
    • 1
    Email author
  1. 1.CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d’Agents Therapeutiques Université Paris 13Sorbonne Paris CitéBobignyFrance
  2. 2.Department of Clinical Laboratory MedicineSouthwest Hospital, Third Military Medical UniversityChongqingChina
  3. 3.Institut des Molécules et Matériaux du Mans (IMMM - UMR CNRS 6283)Le Mans UniversitéLe Mans cedex 9France

Personalised recommendations