Advertisement

Plasmonics

pp 1–5 | Cite as

All-Metal Resonant Metamaterials for One-, Two-, Three-Band Perfect Light Absorbers and Sensors

  • Xiaoshan Liu
  • Guolan Fu
  • Xuefeng Zhan
  • Zhengqi Liu
Article

Abstract

Perfect light absorption is achieved in all-metal resonant metamaterials. The maximal absorption is up to 99.2% and the spectral bandwidth is down to 24 nm. Moreover, a tunable absorption spectrum with one-, two-, three-band light absorption can be obtained in the visible frequency range by utilizing a controllable structural geometry for this all-metal resonant metamaterial platform. The localized surface plasmons of metallic resonators and their hybrid coupling effects are the main contributions for the observed perfect absorption. Particularly, high-performance refractive index sensing with single or multiple detection wavelengths is achieved based on this novel absorber scheme.

Keywords

Metamaterials Perfect absorber All-metal Refractive index sensing 

Notes

Funding Information

This work received support from the National Natural Science Foundation of China (Grants 11664015, 11464019, 11564017, and 51761015).

References

  1. 1.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  2. 2.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRefGoogle Scholar
  3. 3.
    Liao Y, Zhao Y (2015) Absorption manipulation in a narrowband infrared absorber based on the hybridization of gap plasmon and Fabry-Perot resonance. Plasmonics 10:1219–1223CrossRefGoogle Scholar
  4. 4.
    Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2014) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899–903CrossRefGoogle Scholar
  5. 5.
    Li J-X, Xu Y, Dai Q-F, Lan S, Tie S-L (2016) Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling. Laser Photonics Rev 10:826–834CrossRefGoogle Scholar
  6. 6.
    Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707–718CrossRefGoogle Scholar
  7. 7.
    Chen J, Mao P, Xu R, Tang C, Liu Y, Wang Q, Zhang L (2015) Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials. Opt Express 23:16238–16245CrossRefGoogle Scholar
  8. 8.
    Yi Z, Liu M, Luo J, Zhao Y, Zhang W, Yi Y, Yi Y, Duan T, Wang C, Tang Y (2017) Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films. Opt Commun 390:1–6CrossRefGoogle Scholar
  9. 9.
    Li Z, Wang W, Rosenmann D, Czaplewski DA, Yang X, Gao J (2016) All-metal structural color printing based on aluminum plasmonic metasurfaces. Opt Express 24:20472–20480CrossRefGoogle Scholar
  10. 10.
    Jamali AA, Witzigmann B (2014) Plasmonic perfect absorbers for biosensing applications. Plasmonics 9:1265–1270CrossRefGoogle Scholar
  11. 11.
    Liu Z, Liu G, Huang Z, Liu X, Fu G (2018) Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol Energy Mater Sol Cells 179:346–352CrossRefGoogle Scholar
  12. 12.
    Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S (2014) Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev 8:495–520CrossRefGoogle Scholar
  13. 13.
    Lin Y, Cui Y, Ding F, Fung KH, Ji T, Li D, Hao Y (2017) Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Opt Mater Express 7:606–617CrossRefGoogle Scholar
  14. 14.
    Zhao D, Meng L, Gong H, Chen X, Chen Y, Yan M, Li Q, Qiu M (2014) Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina. Appl Phys Lett 104:221107CrossRefGoogle Scholar
  15. 15.
    Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:98–120Google Scholar
  16. 16.
    Li Q, Gao J, Yang H, Liu H, Wang X, Li Z, Guo X (2017) Tunable plasmonic absorber based on propagating and localized surface plasmons using metal-dielectric-metal structure. Plasmonics 12:1037–1043CrossRefGoogle Scholar
  17. 17.
    Yue W, Wang Z, Yang Y, Han J, Li J, Guo Z, Tan H, Zhang X-X (2016) High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing. Plasmonics 11:1557–1563CrossRefGoogle Scholar
  18. 18.
    Zhang F, Feng S, Qiu K, Liu Z, Fan Y, Zhang W, Zhao Q, Zhou J (2015) Mechanically stretchable and tunable metamaterial absorber. Appl Phys Lett 106:091907CrossRefGoogle Scholar
  19. 19.
    Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G (2015) Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl Mater Interfaces 7:4962–4968CrossRefGoogle Scholar
  20. 20.
    Ng RJH, Goh XM, Yang JKW (2015) All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance. Opt Express 23:32597–32605CrossRefGoogle Scholar
  21. 21.
    Xiong X, Jiang SC, Hu YH, Peng RW, Wang M (2013) Structured metal film as a perfect absorber. Adv Mater 25:3994–4000CrossRefGoogle Scholar
  22. 22.
    Liu XL, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901CrossRefGoogle Scholar
  23. 23.
    Sobhani A, Knight MW, Wang Y, Zheng B, King NS, Brown LV, Fang Z, Nordlander P, Halas NJ (2013) Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun 4:1643CrossRefGoogle Scholar
  24. 24.
    Ng C, Cadusch JJ, Dligatch S, Roberts A, Davis TJ, Mulvaney P, Gómez DE (2016) Hot carrier extraction with plasmonic broadband absorbers. ACS Nano 10:4704–4711CrossRefGoogle Scholar
  25. 25.
    Ng C, Yap LW, Roberts A, Cheng W, Gómez DE (2017) Black gold: broadband, high absorption of visible light for photochemical systems. Adv Funct Mater 27:1604080CrossRefGoogle Scholar
  26. 26.
    Palik ED (1985) Handbook of optical constants of solids. AcademicGoogle Scholar
  27. 27.
    Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method, 2nd edn. Artech House Publishers, BostonGoogle Scholar
  28. 28.
    Liu G, Hu Y, Liu Z, Chen Y, Cai Z, Zhang X, Huang K (2014) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys Chem Chem Phys 16:4320–4328CrossRefGoogle Scholar
  29. 29.
    Liu Z, Hang J, Chen J, Yan Z, Tang C, Chen Z, Zhan P (2012) Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal. Opt Express 20:9215–9225CrossRefGoogle Scholar
  30. 30.
    Chen F, Zhang H (2016) Absorption property and nanosensing via double metal films with rectangle holes array. Opt Commun 379:13–18CrossRefGoogle Scholar
  31. 31.
    Ye J, Dorpe PV (2011) Improvement of figure of merit for gold nanobar array plasmonic sensors. Plasmonics 6:665–671CrossRefGoogle Scholar
  32. 32.
    Mandal P (2016) Plasmonic perfect absorber for refractive index sensing and SERS. Plasmonics 11:223–229CrossRefGoogle Scholar
  33. 33.
    Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6:709–713CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoshan Liu
    • 1
  • Guolan Fu
    • 1
  • Xuefeng Zhan
    • 1
  • Zhengqi Liu
    • 1
  1. 1.Jiangxi Key Laboratory of Nanomaterials and Sensors, Provincial Key Laboratory of Optoelectronic and Telecommunication, College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina

Personalised recommendations