Advertisement

Plasmonics

, Volume 14, Issue 4, pp 961–966 | Cite as

Hybrid Mode of Optical States in Opal-like Plasmonic-Photonic Crystals

  • A. V. KoryukinEmail author
  • A. A. Akhmadeev
  • A. R. Gazizov
  • M. Kh. Salakhov
Article

Abstract

We present an investigation to ascertain the role of the hybrid Tamm-surface plasmonic-photonic mode of optical states in light transmission of opal-like metal-dielectric photonic crystals. The mode of optical states exhibits interesting features in the control of light. Transmission spectra of one-dimensional plasmonic-photonic crystal have a maximum inside photonic bandgap due to excitation of Tamm plasmon in both polarizations. Three-dimensional opal-like plasmonic-photonic crystals have not transmission peak in the bandgap due to unconventional Tamm state. Modeling different versions of plasmonic-photonic crystal, we define the conditions of existence of a polarization-sensitive photonic bandgap transmission peak in the opal-like plasmonic-photonic crystal. Additionally, we also study the condition of efficient excitation of the hybrid plasmonic-photonic mode in such structures.

Keywords

Surface plasmon Tamm plasmon Plasmon coupling Plasmon-photonic crystals Opal-like photonic crystals 

References

  1. 1.
    Symonds C, Lheureux G, Hugonin JP, Greffet JJ, Laverdant J, Brucoli G, Lemaitre A, Senellart P, Bellessa J (2013) Confined Tamm plasmon lasers. Nano Lett 13:3179–3184.  https://doi.org/10.1021/nl401210b CrossRefGoogle Scholar
  2. 2.
    Zhang WL, Wang F, Rao YJ, Jiang Y (2014) Novel sensing concept based on optical Tamm plasmon. Optic Express 22:14524–14529.  https://doi.org/10.1364/OE.22.014524 CrossRefGoogle Scholar
  3. 3.
    Baryshev AV, Merzlikin AM (2014) Plasmonic photonic-crystal slabs: visualization of the Bloch surface wave resonance for an ultrasensitive, robust and reusable optical biosensor. Crystals 4:498–508.  https://doi.org/10.3390/cryst4040498 CrossRefGoogle Scholar
  4. 4.
    Shaban M, Ahmed AM, Abdel-Rahman E, Hamdy H (2017) Tunability and sensing properties of plasmonic/1D photonic crystal. Sci Rep 7(41983).  https://doi.org/10.1038/srep41983
  5. 5.
    Lopez-Garcia M (2011) Self assembled photonic-plasmonic crystals for light control at the nanoscale. Dissertation, University of Santiago de CompostelaGoogle Scholar
  6. 6.
    Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. Princeton University Press, PrincetonGoogle Scholar
  7. 7.
    Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge Univrsity Press, New YorkCrossRefGoogle Scholar
  8. 8.
    Maier S (2007) Plasmonics: fundamentals and applications. Springer Science+Business Media LLCGoogle Scholar
  9. 9.
    Kaliteevski M, Iorsh I, Brand S, Abram RA, Chamberlain JM, Kavokin AV, Shelykh IA (2007) Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B 76(165415).  https://doi.org/10.1103/PhysRevB.76.165415
  10. 10.
    Sasin ME, Seisyan RP, Kaliteevski MA, Brand S, Abram RA, Chamberlain JM, Iorsh I, Shelykh IA, Egorov AY, Vasilev AP, Mikhrin VS, Kavokin AV (2010) Tamm plasmon-polaritons: first experimental observation. Superlattice Microst 47:44–49.  https://doi.org/10.1016/j.spmi.2009.09.003 CrossRefGoogle Scholar
  11. 11.
    Liew TCH, Kavokin AV, Ostatnický T, Kaliteevski M, Shelykh IA, Abram RA (2010) Exciton-polariton integrated circuits. Phys Rev B 82(033302).  https://doi.org/10.1103/PhysRevB.82.033302
  12. 12.
    Afinogenov BI, Bessonov VO, Nikulin AA, Fedyanin AA (2013) Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals. Appl Phys Lett 103:061112.  https://doi.org/10.1063/1.4817999 CrossRefGoogle Scholar
  13. 13.
    Azzini S, Lheureux G, Symonds C, Benoit J-M, Senellart P, Lemaitre A, Greffet J-J, Blanchard C, Sauvan C, Bellessa J (2016) Generation and spatial control of hybrid Tamm plasmon/surface plasmon modes. ACS Photonics 3:1776–1781.  https://doi.org/10.1021/acsphotonics.6b00521 CrossRefGoogle Scholar
  14. 14.
    Bikbaev RG, Ya VS, Timofeev IV (2017) Optical Tamm states at the interface between a photonic crystal and a gyroid layer. J Opt Soc Am 34:2198–2202.  https://doi.org/10.1364/JOSAB.34.002198 CrossRefGoogle Scholar
  15. 15.
    Liu H, Sun X, Yao F, Pei Y, Yuan H, Zhao H (2012) Controllable coupling of localized and propagating surface plasmons to Tamm plasmons. Plasmonics 7:749–754.  https://doi.org/10.1007/s11468-012-9369-x CrossRefGoogle Scholar
  16. 16.
    Salewski M, Poltavtsev SV, Kapitonov Yu V, Vondran J, Yakovlev DR, Schneider C, Kamp M, Höfling S, Oulton R, Akimov IA, Kavokin AV, Bayer M (2017) Photon echoes from (In,Ga)As quantum dots embedded in a Tamm-plasmon microcavity. Phys Rev B 95(035312).  https://doi.org/10.1103/PhysRevB.95.035312
  17. 17.
    Sosnova MV, Mamykin SV, Korovin AV, Dmitruk NL (2016) Hybridization of surface plasmon polariton and photonic crystal modes in Bragg mirror with periodically profiled metal film. Nanoscale Res Lett 11:144.  https://doi.org/10.1186/s11671-016-1357-1 CrossRefGoogle Scholar
  18. 18.
    Neshasteh H, Mataji-Kojouri A, Akbarzadeh-Jahromi S-A, Shahabadi M (2016) A hybrid photonic-plasmonic sensing platform for differentiating background and surface interactions using an array of metal–insulator–metal resonators. IEEE Sensors J 16:1621–1627.  https://doi.org/10.1109/JSEN.2015.2503378 CrossRefGoogle Scholar
  19. 19.
    Shukla MK, Das R (2018) Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals. Opt Lett 43:362–365.  https://doi.org/10.1364/OL.43.000362 CrossRefGoogle Scholar
  20. 20.
    Pankin PS, Vetrov SY, Timofeev IV (2017) Tunable hybrid Tamm-microcavity states. J Opt Soc Am 34:2633–2639.  https://doi.org/10.1364/JOSAB.34.002633 CrossRefGoogle Scholar
  21. 21.
    Afinogenov BI, Bessonov VO, Fedyanin AA (2014) Second-harmonic generation enhancement in the presence of Tamm plasmon-polaritons. Opt Lett 39:6895–6898.  https://doi.org/10.1364/OL.39.006895 CrossRefGoogle Scholar
  22. 22.
    Xue C, Jiang H, Lu H, Du G, Chen H (2013) Efficient third-harmonic generation based on Tamm plasmon polaritons. Opt Lett 38:959–961.  https://doi.org/10.1364/OL.38.000959 CrossRefGoogle Scholar
  23. 23.
    Chen Y, Zhang D, Zhu L, Wang R, Wang P, Ming H, Badugu R, Lakowicz JR (2014) Tamm plasmon- and surface plasmon-coupled emission from hybrid plasmonic–photonic structures. Optica 1:407–413.  https://doi.org/10.1364/OPTICA.1.000407 CrossRefGoogle Scholar
  24. 24.
    Das R, Srivastava T, Jha R (2014) Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures. Opt Lett 39:896–899.  https://doi.org/10.1364/OL.39.000896 CrossRefGoogle Scholar
  25. 25.
    Kaliteevski MA, Lazarenko AA, Il’inskaya ND, Zadiranov YM, Sasin ME, Zaitsev D, Mazlin VA, Brunkov PN, Pavlov SI, Egorov AY (2015) Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity. Plasmonics 10:281–284.  https://doi.org/10.1007/s11468-014-9806-0 CrossRefGoogle Scholar
  26. 26.
    Lopez-Garcia M, Galisteo-Lopez JF, Blanco A, Sanchez-Marcos J, Lopez C, Garcia-Martin A (2010) Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic–plasmonic crystals. Small 6:1757–1761.  https://doi.org/10.1002/smll.201000216 CrossRefGoogle Scholar
  27. 27.
    T-l L, Russel KJ, Cui S, Hu EL (2014) Two-dimensional hybrid photonic/plasmonic crystal cavities. Opt Express 22:8219–8225.  https://doi.org/10.1364/OE.22.008219 CrossRefGoogle Scholar
  28. 28.
    Guo H, Guo J (2015) Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor. Opt Lett 40:249–252.  https://doi.org/10.1364/OL.40.000249 CrossRefGoogle Scholar
  29. 29.
    Shi L, Liu X, Yin H, Zi J (2010) Optical response of a flat metallic surface coated with a monolayer array of latex spheres. Phys Lett A 37:1059–1062.  https://doi.org/10.1016/j.physleta.2009.12.033 CrossRefGoogle Scholar
  30. 30.
    Lopez-Garcia M, Galisteo-Lopez JF, Blanco A, Lopez C, Garcia-Martin A (2010) High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification. Adv Funct Mater 20:4338–4343.  https://doi.org/10.1002/adfm.201001192 CrossRefGoogle Scholar
  31. 31.
    Galisteo-Lopez JF, Lopez-Garcia M, Lopez C, Garcia-Martin A (2011) Intrinsic losses in self-assembled hybrid metallodielectric systems. Appl Phys Lett 99:083302.  https://doi.org/10.1063/1.3626856 CrossRefGoogle Scholar
  32. 32.
    Galisteo-Lopez JF, Lopez-Garcia M, Blanco A, Lopez C (2012) Studying light propagation in self-assembled hybrid photonic−plasmonic crystals by Fourier microscopy. Langmuir 28:9174–9179.  https://doi.org/10.1021/la300448y CrossRefGoogle Scholar
  33. 33.
    Landstrom L, Brodoceanu D, Piglmayer K, Bauerle D (2006) Extraordinary optical transmission through metal-coated colloidal monolayers. Appl Phys A Mater Sci Process 84:373–377.  https://doi.org/10.1007/s00339-006-3635-8 CrossRefGoogle Scholar
  34. 34.
    Landstrom L, Brodoceanu D, Bauerle D, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L (2009) Extraordinary transmission through metal-coated monolayers of microspheres. Opt Express 17:761–772.  https://doi.org/10.1364/OE.17.000761 CrossRefGoogle Scholar
  35. 35.
    Ding B, Pemble ME, Korovin AV, Peschel U, Romanov SG (2010) Three-dimensional photonic crystals with an active surface: gold film terminated opals. Phys Rev B 82(035119).  https://doi.org/10.1103/PhysRevB.82.035119
  36. 36.
    Ding B, Bardosova M, Pemble ME, Korovin AV, Peschel U, Romanov SG (2011) Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals. Adv Funct Mater 21:4182–4192.  https://doi.org/10.1002/adfm.201100695 CrossRefGoogle Scholar
  37. 37.
    Romanov SG, Korovin AV, Regensburger A, Peschel U (2011) Hybrid colloidal plasmonic-photonic crystals. Adv Mater 23:2515–2533.  https://doi.org/10.1002/adma.201100460 CrossRefGoogle Scholar
  38. 38.
    Romanova AS, Korovin AV, Romanov SG (2013) Effect of dimensionality on the spectra of hybrid plasmonic–photonic crystals. Phys Solid State 55:1725–1732.  https://doi.org/10.1134/S1063783413080234 CrossRefGoogle Scholar
  39. 39.
    Korovin AV, Romanov SG (2016) Unconventional optical Tamm states in metal-terminated three-dimensional photonic crystals. Phys Rev B 93:115440.  https://doi.org/10.1103/PhysRevB.93.115440 CrossRefGoogle Scholar
  40. 40.
    Akimov A V, Meluchev A A, Kurdyukov D A, Scherbakov A V, Holst A, Golubev V G (2007) Plasmonic effects and visible light diffraction in three-dimensional opal-metal photonic crystals. Appl Phys Lett 90:171108 (2007).  https://doi.org/10.1063/1.2724894
  41. 41.
    Chen G, Wang D, Hong W, Sun L, Zhu Y, Chen X (2017) Fluorescence enhancement on large area self-assembled plasmonic-3D photonic crystals. Small 13:1602612.  https://doi.org/10.1002/smll.201602612 CrossRefGoogle Scholar
  42. 42.
    Lv G, Li J, Tie S-L, Lan S (2016) Influence of a three-dimensional photonic crystal on the plasmonic properties of gold nanorods. Opt Express 24:14124–14137.  https://doi.org/10.1364/OE.24.014124 CrossRefGoogle Scholar
  43. 43.
    Tsvetkov MY, Khlebtsov BN, Khanadeev VA, Bagratashvili VN, Timashev PS, Samoylovich MI, Khlebtsov NG (2013) SERS substrates formed by gold nanorods deposited on colloidal silica films. Nanoscale Res Lett 8:250.  https://doi.org/10.1186/1556-276X-8-250 CrossRefGoogle Scholar
  44. 44.
    Robbiano V, Giordano M, Martella C, Stasio FD, Chiappe D, De Mongeot FB, Comoretto D (2013) Hybrid plasmonic–photonic nanostructures: gold nanocrescents over opals. Adv Optical Mater 1:389–396.  https://doi.org/10.1002/adom.201200060 CrossRefGoogle Scholar
  45. 45.
    Wang Z, Ye Y, Zhang Y, Zhang J (2009) Visible transmission through metal-coated colloidal crystals. Appl Phys A Mater Sci Process 97:225–228.  https://doi.org/10.1007/s00339-009-5184-4 CrossRefGoogle Scholar
  46. 46.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379.  https://doi.org/10.1103/PhysRevB.6.4370 CrossRefGoogle Scholar
  47. 47.
    Lin T, Lin J, Guo J, Kan H (2015) Suppression of photonic bandgap reflection by localized surface plasmons in self-assembled plasmonic–photonic crystals. Adv Funct Mater 3:1470–1475.  https://doi.org/10.1002/adom.201500168 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of PhysicsKazan Federal UniversityKazanRussia
  2. 2.Institute of Applied ResearchTatarstan Academy of SciencesKazanRussia

Personalised recommendations