pp 1–9 | Cite as

Nanoimprint Lithography–Based Fabrication of Plasmonic Array of Elliptical Nanoholes for Dual-Wavelength, Dual-Polarisation Refractive Index Sensing

  • Caoimhe Robinson
  • John Justice
  • Jarno Petäjä
  • Mikko Karppinen
  • Brian Corbett
  • Alan O’Riordan
  • Pierre LoveraEmail author


We report on the novel fabrication and characterisation of plasmonic arrays of elliptical nanohole, and their use for refractive index based sensing. The substrates were fabricated using nanoimprint lithography into a chromium hard mask followed by transfer of the patterns into the underlying gold layer by dry etching—a combination of processes amendable to mass manufacturing. 3D-FDTD simulations were undertaken and showed the transmission spectrum was dependant upon the polarisation of the incident light, with a series of minima that can be attributed to plasmonic effects on the gold/water or gold/substrate interfaces. Each polarisation showed two peaks on the gold/water interface, one in the visible and one in the near-infrared part of the spectrum. Simulated electric field profiles showed that the electric field in the infrared propagates deep in the bulk while the one in the visible was more tightly bound to the surface. Experimental transmission spectra of the fabricated samples showed good agreement with the simulated ones. Bulk refractive index experiments were carried out and sensitivities of 293 nm/RIU and 414 nm/RIU were obtained for the two spectral features of interest when the polarisation was along the long axis of the elliptical nanohole for the visible and infrared features, respectively, and 293 nm/RIU and 323 nm/RIU measured when the polarisation was along the short axis of the nanohole.


Elliptical Nanoimprint Polarisation Nanohole array Plasmonics 


Funding Information

This work was supported by the EU-funded project Phast-ID (FP7-ICT-2009-5-258238) and the EPA project UisceSense (2015-W-MS-21).


  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  2. 2.
    Blanchard-Dionne A-P, Meunier M (2017) Sensing with periodic nanohole arrays. Adv Opt Photon 9(4):891–940CrossRefGoogle Scholar
  3. 3.
    Escobedo C (2013) On-chip nanohole array based sensing: a review. Lab Chip 13(13):2445–2463CrossRefGoogle Scholar
  4. 4.
    Lovera P, Creedon N, Alatawi H, Mitchell M, Burke M, Quinn AJ, O’Riordan A (2014) Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications. Nanotechnology 25(17):175502CrossRefGoogle Scholar
  5. 5.
    Wong CL, Olivo M (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4):809–824CrossRefGoogle Scholar
  6. 6.
    Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20(12):4813–4815CrossRefGoogle Scholar
  7. 7.
    Wright JB, Cicotte KN, Subramania G, Dirk SM, Brener I (2012) Chemoselective gas sensors based on plasmonic nanohole arrays. Opt Mater Express 2(11):1655–1662CrossRefGoogle Scholar
  8. 8.
    Lindquist NC, Turner MA, Heppner BP (2014) Template fabricated plasmonic nanoholes on analyte-sensitive substrates for real-time vapor sensing. RSC Adv 4(29):15115–15121CrossRefGoogle Scholar
  9. 9.
    Le AP et al (2012) Functional nanoimprinted plasmonic crystals for chemical sensing and imaging. In: Dmitriev A (ed) Nanoplasmonic sensors, pp 199–227CrossRefGoogle Scholar
  10. 10.
    Chuo Y, Hohertz D, Landrock C, Omrane B, Kavanagh KL, Kaminska B (2013) Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing. IEEE Sensors J 13(10):3982–3990CrossRefGoogle Scholar
  11. 11.
    Barrios CA, Canalejas-Tejero V, Herranz S, Moreno-Bondi MC, Avella-Oliver M, Puchades R, Maquieira A (2014) Aluminum nanohole arrays fabricated on polycarbonate for compact disc-based label-free optical biosensing. Plasmonics 9(3):645–649CrossRefGoogle Scholar
  12. 12.
    Bottazzi B, Fornasari L, Frangolho A, Giudicatti S, Mantovani A, Marabelli F, Marchesini G, Pellacani P, Therisod R, Valsesia A (2014) Multiplexed label-free optical biosensor for medical diagnostics. J Biomed Opt 19(1):017006CrossRefGoogle Scholar
  13. 13.
    Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H (2014) Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32(5):490–U219CrossRefGoogle Scholar
  14. 14.
    Cetin AE, Etezadi D, Galarreta BC, Busson MP, Eksioglu Y, Altug H (2015) Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing. Acs Photonics 2(8):1167–1174CrossRefGoogle Scholar
  15. 15.
    Ding T et al (2015) Quantification of a cardiac biomarker in human serum using extraordinary optical transmission (EOT). PLoS One 10(3)CrossRefGoogle Scholar
  16. 16.
    Li X, Soler M, Özdemir CI, Belushkin A, Yesilköy F, Altug H (2017) Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion. Lab Chip 17(13):2208–2217CrossRefGoogle Scholar
  17. 17.
    Cetin AE, Iyidogan P, Hayashi Y, Wallen M, Vijayan K, Tu E, Nguyen M, Oliphant A (2018) Plasmonic sensor could enable label-free DNA sequencing. Acs Sensors 3(3):561–568CrossRefGoogle Scholar
  18. 18.
    Soler M, Belushkin A, Cavallini A, Kebbi-Beghdadi C, Greub G, Altug H (2017) Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Biosens Bioelectron 94:560–567CrossRefGoogle Scholar
  19. 19.
    Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci U S A 108(29):11784–11789CrossRefGoogle Scholar
  20. 20.
    Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 41(8):1049–1057CrossRefGoogle Scholar
  21. 21.
    Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H (2010) An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10(12):4962–4969CrossRefGoogle Scholar
  22. 22.
    Niu LF et al (2015) Integrating plasmonic diagnostics and microfluidics. Biomicrofluidics 9(5):052611CrossRefGoogle Scholar
  23. 23.
    Monteiro JP, de Oliveira JH, Radovanovic E, Brolo AG, Girotto EM (2016) Microfluidic plasmonic biosensor for breast cancer antigen detection. Plasmonics 11(1):45–51CrossRefGoogle Scholar
  24. 24.
    Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82(24):10015–10020CrossRefGoogle Scholar
  25. 25.
    Zehtabi-Oskuie A, Bergeron JG, Gordon R (2012) Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres. Sci Rep 2:966CrossRefGoogle Scholar
  26. 26.
    Yoshikawa T, Tamura M, Tokonami S, Iida T (2017) Optical trap-mediated high-sensitivity nanohole array biosensors with random nanospikes. J Phys Chem Lett 8(2):370–374CrossRefGoogle Scholar
  27. 27.
    Atighilorestani M, dos Santos DP, Jaimes RFVV, Rahman MM, Temperini MLA, Brolo AG (2016) Electrochemical control of light transmission through nanohole electrode arrays. ACS Photonics 3(12):2375–2382CrossRefGoogle Scholar
  28. 28.
    Galvan DD, Špačková B, Slabý J, Sun F, Ho YH, Homola J, Yu Q (2016) Surface-enhanced Raman scattering on gold nanohole arrays in symmetrical dielectric environments exhibiting electric field extension. J Phys Chem C 120(44):25519–25529CrossRefGoogle Scholar
  29. 29.
    Zheng P, Cushing SK, Suri S, Wu N (2015) Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Phys Chem Chem Phys 17(33):21211–21219CrossRefGoogle Scholar
  30. 30.
    Lee SH, Bantz KC, Lindquist NC, Oh SH, Haynes CL (2009) Self-assembled plasmonic nanohole arrays. Langmuir 25(23):13685–13693CrossRefGoogle Scholar
  31. 31.
    Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4(10):2015–2018CrossRefGoogle Scholar
  32. 32.
    Skehan C, Ai B, Larson SR, Stone KM, Dennis WM, Zhao Y (2018) Plasmonic and SERS performances of compound nanohole arrays fabricated by shadow sphere lithography. Nanotechnology 29(9):095301CrossRefGoogle Scholar
  33. 33.
    Yesilkoy F et al (2018) Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light-Sci Appl:7Google Scholar
  34. 34.
    Coskun AF et al (2014) Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep 4Google Scholar
  35. 35.
    Cetin AE et al (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light-Sci Appl:3Google Scholar
  36. 36.
    Guyot L, Blanchard-Dionne AP, Patskovsky S, Meunier M (2011) Integrated silicon-based nanoplasmonic sensor. Opt Express 19(10):9962–9967CrossRefGoogle Scholar
  37. 37.
    Seiler ST, Rich IS, Lindquist NC (2016) Direct spectral imaging of plasmonic nanohole arrays for real-time sensing. Nanotechnology 27(18):184001CrossRefGoogle Scholar
  38. 38.
    Blanchard-Dionne AP, Guyot L, Patskovsky S, Gordon R, Meunier M (2011) Intensity based surface plasmon resonance sensor using a nanohole rectangular array. Opt Express 19(16):15041–15046CrossRefGoogle Scholar
  39. 39.
    Lesuffleur A, Im H, Lindquist NC, Oh SH (2007) Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl Phys Lett 90(24):243110CrossRefGoogle Scholar
  40. 40.
    Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92(3)Google Scholar
  41. 41.
    Tellez GAC et al (2013) Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing. Lab Chip 13(13):2541–2546CrossRefGoogle Scholar
  42. 42.
    Ai B, Basnet P, Larson S, Ingram W, Zhao Y (2017) Plasmonic sensor with high figure of merit based on differential polarization spectra of elliptical nanohole array. Nanoscale 9(38):14710–14721CrossRefGoogle Scholar
  43. 43.
    Nishiguchi K, Sueyoshi K, Hisamoto H, Endo T (2016) Fabrication of gold-deposited plasmonic crystal based on nanoimprint lithography for label-free biosensing application. Jpn J Appl Phys 55(8):08RE02CrossRefGoogle Scholar
  44. 44.
    Mona JKK et al (2010) Inexpensive and fast wafer-scale fabrication of nanohole arrays in thin gold films for plasmonics. Nanotechnology 21(20):205301CrossRefGoogle Scholar
  45. 45.
    Md Nazmul H et al (2014) High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask. Nanotechnology 25(35):355301CrossRefGoogle Scholar
  46. 46.
  47. 47.
    Lovera P, Jones D, Corbett B, O’Riordan A (2012) Polarization tunable transmission through plasmonic arrays of elliptical nanopores. Opt Express 20(23):25325–25332CrossRefGoogle Scholar
  48. 48.
    Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58(11):6779–6782CrossRefGoogle Scholar
  49. 49.
    Gao H, Henzie J, Odom TW (2006) Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett 6(9):2104–2108CrossRefGoogle Scholar
  50. 50.
    Chang S-H, Gray SK, Schatz GC (2005) Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 13(8):3150–3165CrossRefGoogle Scholar
  51. 51.
    Hossain MN, Justice J, Lovera P, O’Riordan A, Corbett B (2014) Dual resonance approach to decoupling surface and bulk attributes in photonic crystal biosensor. Opt Lett 39(21):6213–6216CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tyndall National InstituteUniversity College CorkCorkIreland
  2. 2.VTT Technical Research Centre of FinlandOuluFinland

Personalised recommendations