pp 1–6 | Cite as

A Low-Cost Stable SERS Substrate Based on Modified Silicon Nanowires

  • Hadi Rouhbakhsh
  • Nahid Farkhari
  • Sohrab Ahmadi-kandjani
  • Saeed Karima
  • Habib Tajalli
  • Mohammad Rashidi


In this paper, we report fabrication of a simple, stable, low-cost, and easy-to-fabricate substrate for surface enhanced Raman spectroscopy (SERS) applications. Silicon nanowires are one of the widely used nanostructures in different fields of nanotechnology. Through creating and varying the gap between nanowires and reducing their filling ratio and tapering, silicon nanowires are converted to applicable SERS substrates. Furthermore, the effects of annealing and post-KOH etching on these silver-coated silicon nanowire substrates are examined. It is shown that the applied processes remarkably enhance the captured Raman signal. For samples etched with KOH method, an optimized etching time at which the Raman signal reaches its maximum value is obtained as well. Finally, an ultra-high enhancement in the Raman signal is obtained.


Surface-enhanced Raman spectroscopy Silicon nanowire SERS substrates 


  1. 1.
    McCreery RL (2005) Raman spectroscopy for chemical analysis, vol 225. WileyGoogle Scholar
  2. 2.
    Kneipp K, Moskovits M, Kneipp H (2007) Surface-enhanced Raman scattering. Phys Today 60(11):40–46CrossRefGoogle Scholar
  3. 3.
    Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803CrossRefGoogle Scholar
  4. 4.
    Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69(9):4159–4161CrossRefGoogle Scholar
  5. 5.
    Hexter RM, Albrecht M-G (1979) Metal surface Raman spectroscopy: theory. Spectrochim Acta A Mol Spectrosc 35(3):233–251CrossRefGoogle Scholar
  6. 6.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRefGoogle Scholar
  7. 7.
    Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366CrossRefGoogle Scholar
  8. 8.
    Pieczonka NPW, Aroca RF (2005) Inherent complexities of trace detection by surface-enhanced Raman scattering. ChemPhysChem 6(12):2473–2484CrossRefGoogle Scholar
  9. 9.
    Aroca RF, Alvarez-Puebla RA, Pieczonka N, Sanchez-Cortez S, Garcia-Ramos JV (2005) Surface-enhanced Raman scattering on colloidal nanostructures. Adv Colloid Interf Sci 116(1–3):45–61CrossRefGoogle Scholar
  10. 10.
    Šimáková P, Kočišová E, Procházka M (2013) Sensitive Raman spectroscopy of lipids based on drop deposition using DCDR and SERS. J Raman Spectrosc 44(11):1479–1482CrossRefGoogle Scholar
  11. 11.
    Hu P, Zheng X, Zong C, Li M, Zhang L, Li W et al (2014) Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears. J Raman Spectrosc 45(7):565–573CrossRefGoogle Scholar
  12. 12.
    Wang Y, Zhu L, Zhang Y, Yang M (2010) Silicon nanotips formed by self-assembled Au nanoparticle mask. J Nanopart Res 12(5):1821–1828CrossRefGoogle Scholar
  13. 13.
    Park S-H, Im J-H, Im J-W, Chun B-H, Kim J-H (1999) Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces. Microchem J 63(1):71–91CrossRefGoogle Scholar
  14. 14.
    Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. ACS PublicationsGoogle Scholar
  15. 15.
    Zhang X, Yonzon CR, Young MA, Stuart DA, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography. In: IEE Proceedings-Nanobiotechnology. IET, pp 195–206Google Scholar
  16. 16.
    Yue W, Wang Z, Yang Y, Chen L, Syed A, Wong K, Wang X (2012) Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. J Micromech Microeng 22(12):125007CrossRefGoogle Scholar
  17. 17.
    Abu Hatab NA, Oran JM, Sepaniak MJ (2008) Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2(2):377–385CrossRefGoogle Scholar
  18. 18.
    Liu Y-J, Chu HY, Zhao Y-P (2010) Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations. J Phys Chem C 114(18):8176–8183CrossRefGoogle Scholar
  19. 19.
    He Y, Fu J, Zhao Y (2014) Oblique angle deposition and its applications in plasmonics. Front Phys 9(1):47–59CrossRefGoogle Scholar
  20. 20.
    Peng C-T, Lin J-C, Lin C-T, Chiang K-N (2005) Performance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technology. Sensors Actuators A Phys 119(1):28–37CrossRefGoogle Scholar
  21. 21.
    Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen SH (2009) Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9(4):1549–1554CrossRefGoogle Scholar
  22. 22.
    Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167CrossRefGoogle Scholar
  23. 23.
    Peng K, Jie J, Zhang W, Lee S-T (2008) Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett 93(3):33105CrossRefGoogle Scholar
  24. 24.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35CrossRefGoogle Scholar
  25. 25.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292CrossRefGoogle Scholar
  26. 26.
    Fischer KE, Alemán BJ, Tao SL, Daniels RH, Li EM, Bunger MD et al (2009) Biomimetic nanowire coatings for next generation adhesive drug delivery systems. Nano Lett 9(2):716–720CrossRefGoogle Scholar
  27. 27.
    Zhang M-L, Yi C-Q, Fan X, Peng K-Q, Wong N-B, Yang M-S, Zhang RQ, Lee ST (2008) A surface-enhanced Raman spectroscopy substrate for highly sensitive label-free immunoassay. Appl Phys Lett 92(4):43116CrossRefGoogle Scholar
  28. 28.
    Yi C, Li C-W, Fu H, Zhang M, Qi S, Wong N-B, Lee ST, Yang M (2010) Patterned growth of vertically aligned silicon nanowire arrays for label-free DNA detection using surface-enhanced Raman spectroscopy. Anal Bioanal Chem 397(7):3143–3150CrossRefGoogle Scholar
  29. 29.
    Hung Y-J, Lee S-L, Wu K-C, Tai Y, Pan Y-T (2011) Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes. Opt Express 19(17):15792–15802CrossRefGoogle Scholar
  30. 30.
    Jung J-Y, Guo Z, Jee S-W, Um H-D, Park K-T, Lee J-H (2010) A strong antireflective solar cell prepared by tapering silicon nanowires. Opt Express 18(103):A286–A292CrossRefGoogle Scholar
  31. 31.
    Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J (2005) Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew Chemie Int Ed 44(18):2737–2742CrossRefGoogle Scholar
  32. 32.
    Lajvardi M, Eshghi H, Ghazi ME, Izadifard M, Goodarzi A (2015) Structural and optical properties of silicon nanowires synthesized by Ag-assisted chemical etching. Mater Sci Semicond Process 40:556–563CrossRefGoogle Scholar
  33. 33.
    Geyer N, Fuhrmann B, Leipner HS, Werner P (2013) Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires. ACS Appl Mater Interfaces 5(10):4302–4308CrossRefGoogle Scholar
  34. 34.
    Geyer N, Fuhrmann B, Huang Z, de Boor J, Leipner HS, Werner P (2012) Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts. J Phys Chem C 116(24):13446–13451CrossRefGoogle Scholar
  35. 35.
    Huang Z, Geyer N, Werner P, De Boor J, Gösele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23(2):285–308CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Photonics Group, Research Institute for Applied Physics and AstronomyUniversity of TabrizTabrizIran
  2. 2.Iranian National Center for Laser Science and TechnologyTehranIran
  3. 3.Clinical Biochemistry Department, Faculty of MedicineShahid Beheshti University of Medical ScienceTehranIran
  4. 4.Research Center for Pharmaceutical Nanotechnology, Faculty of PharmacyTabriz University of Medical ScienceTabrizIran

Personalised recommendations