Advertisement

Plasmonics

, Volume 14, Issue 2, pp 493–499 | Cite as

Investigation of Plasmonic Bandgap for 1D Exposed and Buried Metallic Gratings

  • Tahir IqbalEmail author
  • Almas BashirEmail author
  • Muhammad Shakil
  • Sumera Afsheen
  • Aqsa Tehseen
  • Mohsin Ijaz
  • Khalid Nadeem Riaz
Article

Abstract

A simulation study for the opening of plasmonic bandgap (PBG) with control over it by varying the slit width (SW) for exposed and buried 1D metallic gratings has been reported by using COMSOL Multiphysics, RF module. We observe excitation of surface plasmon polaritons (SPPs) and splitting up of surface plasmon resonance (SPR) dip to induce PBG by keeping the periodicity constant and varying the slit width for each grating. The resonance wavelengths are taken through far-field transmission and reflection spectra of exposed and buried gratings of different slit widths respectively. The new trends of bandgap energy for varying slit width of exposed and buried metallic gratings have been reported and discussed. In each trend, range of optimum value of slit widths are obtained around half of the periodicity which is a significant observation. The comparison of PBG energy for different metallic devices and the opening of PBG in the dispersion curves is also presented by the variation of incident angles. The potential applications of these devices are to control the surface-enhanced Raman scattering (SERs), light-emitting diodes (LEDs), and solar cell applications.

Keywords

Plasmonic bandgap (PBG) Surface plasmon polaritons (SPPs) 1D metallic grating Slit width (SW) Exposed and buried gratings 

References

  1. 1.
    Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062CrossRefGoogle Scholar
  2. 2.
    Iqbal T, Afsheen S (2016) Plasmonic band gap: role of the slit width in 1D metallic grating on higher refractive index substrate. Plasmonics 11:885–893CrossRefGoogle Scholar
  3. 3.
    Yablonovitch E (1993) Photonic band-gap structures. JOSA B 10:283–295CrossRefGoogle Scholar
  4. 4.
    Ritchie RH, Arakawa ET, Cowan JJ, Hamm RN (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21:1530–1533CrossRefGoogle Scholar
  5. 5.
    Chen Y, Koteles E, Seymour R, Sonek G, Ballantyne J (1983) Surface plasmons on gratings: coupling in the minigap regions. Solid State Commun 46:95–99CrossRefGoogle Scholar
  6. 6.
    Karademir E, Balci S, Kocabas C, Aydinli A (2014) Plasmonic band gap engineering of plasmon–exciton coupling. Opt Lett 39:5697–5700CrossRefGoogle Scholar
  7. 7.
    Chuliá-Jordán R, Unger A (2015) Comparison of the different bandgap cavities in a metallic four-mode plasmonic structure. Plasmonics 10:429–438CrossRefGoogle Scholar
  8. 8.
    Watanabe H, Honda M, Yamamoto N (2014) Size dependence of band-gaps in a one-dimensional plasmonic crystal. Opt Express 22:5155–5165CrossRefGoogle Scholar
  9. 9.
    Hooper IR, Sambles JR (2002) Dispersion of surface plasmon polaritons on short-pitch metal gratings. Phys Rev B 65:165432CrossRefGoogle Scholar
  10. 10.
    Iqbal T, Ijaz M, Javaid M, Rafique M, Riaz KN, Tahir MB, Nabi G, Abrar M, Afsheen S (2018) An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell, Plasmonics 1–8Google Scholar
  11. 11.
    Sabaeian M, Heydari M, Ajamgard N (2015) Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section. AIP Adv 5:087126CrossRefGoogle Scholar
  12. 12.
    You J, Li X, Xie FX, Sha WE, Kwong JH, Li G, Choy WC, Yang Y (2012) Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode. Adv Energy Mater 2:1203–1207CrossRefGoogle Scholar
  13. 13.
    Fang J, Gu J, Liu Q, Zhang W, Su H, Zhang D (2018) Three-dimensional CdS/Au butterfly wing scales with hierarchical rib structures for plasmon-enhanced photocatalytic hydrogen production. ACS Appl Mater Interfaces 10:19649–19655CrossRefGoogle Scholar
  14. 14.
    Jose J, Segerink FB, Korterik JP, Gomez-Casado A, Huskens J, Herek JL, Offerhaus HL (2011) Enhanced surface plasmon polariton propagation length using a buried metal grating. J Appl Phys 109:064906CrossRefGoogle Scholar
  15. 15.
    Koev ST, Agrawal A, Lezec HJ, Aksyuk VA (2012) An efficient large-area grating coupler for surface plasmon polaritons. Plasmonics 7:269–277CrossRefGoogle Scholar
  16. 16.
    Fischer B, Fischer T, Knoll W (1994) Dispersion of surface plasmons in rectangular, sinusoidal, and incoherent silver gratings. J Appl Phys 75:1577–1581CrossRefGoogle Scholar
  17. 17.
    Chen Y, Koteles E, Seymor R, Sonek G, Ballantyne J (1983) One-dimensional long-range plasmonic-photonic structures. Solid State Commun 46:95–99CrossRefGoogle Scholar
  18. 18.
    H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, 1988CrossRefGoogle Scholar
  19. 19.
    Barnes WL, Preist TW, Kitson SC, Sambles JR (1996) Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys Rev B 54:6227–6244CrossRefGoogle Scholar
  20. 20.
    Heitmann D, Kroo N, Schulz C, Szentirmay Z (1987) Dispersion anomalies of surface-plasmons on corrugated metal-insulator interfaces. Phys Rev B 35:2660–2666CrossRefGoogle Scholar
  21. 21.
    Iqbal T, Afsheen S (2016) Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics 11:1247–1256CrossRefGoogle Scholar
  22. 22.
    Palik ED (1997) Handbook of optical constants of solids, five-volume set: handbook of thermo-optic coefficients of optical materials with applications, ElsevierGoogle Scholar
  23. 23.
    Etchegoin P.G, Le Ru E (2008) Principles of surface enhanced Raman spectroscopy and related plasmonic effectsGoogle Scholar
  24. 24.
    O’Connor D (2010) Modelling of nano-optic light delivery mechanisms for use in high density data storage, Queen’s University BelfastGoogle Scholar
  25. 25.
    M. C (2008) User guide: RF moduleGoogle Scholar
  26. 26.
    Iqbal T, Afsheen S (2017) One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12:19–25CrossRefGoogle Scholar
  27. 27.
    Iqbal T (2017) Coupling efficiency of surface plasmon polaritons: far-and near-field analyses. Plasmonics 12:215–221CrossRefGoogle Scholar
  28. 28.
    Iqbal T (2015) Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr Appl Phys 15:1445–1452CrossRefGoogle Scholar
  29. 29.
    Mills D (1977) Interaction of surface polaritons with periodic surface structures; Rayleigh waves and gratings. Phys Rev B 15:3097–3118CrossRefGoogle Scholar
  30. 30.
    Porto J, Garcia-Vidal F, Pendry J (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83:2845–2848CrossRefGoogle Scholar
  31. 31.
    Ropers C, Park D, Stibenz G, Steinmeyer G, Kim J, Kim D, Lienau C (2005) Femtosecond light transmission and subradiant damping in plasmonic crystals. Phys Rev Lett 94:113901CrossRefGoogle Scholar
  32. 32.
    Javaid M, Iqbal T (2016) Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11:167–173CrossRefGoogle Scholar
  33. 33.
    Zakharian AR, Moloney JV, Mansuripur M (2007) Surface plasmon polaritons on metallic surfaces. Opt Express 15:183–197CrossRefGoogle Scholar
  34. 34.
    Rosengart E-H, Pockrand I (1977) Influence of higher harmonics of a grating on the intensity profile of the diffraction orders via surface plasmons. Opt Lett 1:194–195CrossRefGoogle Scholar
  35. 35.
    Barnes W, Preist T, Kitson S, Sambles J, Cotter N, Nash D (1995) Photonic gaps in the dispersion of surface plasmons on gratings. Phys Rev B 51:11164–11167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of Gujrat, Hafiz Hayat CampusGujratPakistan
  2. 2.Department of Zoology, Faculty of ScienceUniversity of Gujrat, Hafiz Hayat CampusGujratPakistan

Personalised recommendations