, Volume 14, Issue 2, pp 435–440 | Cite as

Multilayer Hybrid Plasmonic Nano Patch Antenna

  • Prateeksha SharmaEmail author
  • V. Dinesh Kumar


This is the first report of a hybrid plasmonic nano patch antenna having metal insulator metal (HMIM) multilayer configuration. It is designed in a footprint area of 1.7 × 1.175 μm2 to resonate at 1.55 μm wavelength. The proposed antenna is inset fed by an HMIM plasmonic waveguide for achieving proper impedance matching. It is observed, through electromagnetic numerical simulation, that the proposed plasmonic nano patch antenna emits a directional beam with a bandwidth, gain, and efficiency of 0.194 μm, 8.3 dB, and 96% respectively, which are significantly higher than previously reported designs. Since inset-fed antennas are suitable for developing high-gain antenna array, hence further, we examined antenna performance by designing antenna array. The proposed antenna is practically realizable and can be fabricated using standard semiconductor fabrication process. Moreover, it could be used for numerous chip scale applications such as wireless interconnects energy harvesting, photoemission, photo detection, scattering, heat transfer, spectroscopy, and optical sensing.


Antenna Far field Hybrid metal insulator metal Inset fed Nano patch Plasmonics 


  1. 1.
    Saad-Bin-Alam M, Khalil MI, Rahman A, Chowdhury AM (2015) Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications. IEEE Photon Technol Lett 27:1092–1095. CrossRefGoogle Scholar
  2. 2.
    Yousefi L (2014) Highly directive hybrid plasmonic leaky wave optical nano-antenna. Progress In Electromagnetics Research Letters 50:85–90. CrossRefGoogle Scholar
  3. 3.
    Yousefi L, Foster AC (2012) Waveguide-fed optical hybrid plasmonic patch nano-antenna. Opt Express 20:18326–18335. CrossRefGoogle Scholar
  4. 4.
    Kashyap N, Wani ZA, Jain R, Khusboo, Dinesh Kumar V (2014) Investigation of a nanostrip patch antenna in optical frequencies. Appl Phys A Mater Sci Process 117:725–729. CrossRefGoogle Scholar
  5. 5.
    Cubukcu E, Kort EA, Crozier KB, Capasso F (2006) Plasmonic laser antenna. Appl Phys Lett 89:093120–093123. CrossRefGoogle Scholar
  6. 6.
    Brongersma ML (2008) Plasmonics: engineering optical nanoantennas. Nat Photonics 2:270–272. CrossRefGoogle Scholar
  7. 7.
    Bakker RM, Yuan H-K, Lui Z, Drachev V, Kildishev AV, Shalaev VM, Pederson RH, Gresillon S, Boltasseva A (2008) Enhanced localized fluorescence in plasmonic nanoantennae. Appl Phys Lett 92:043101–043103. CrossRefGoogle Scholar
  8. 8.
    Silveira GNM, Wiederhecker GS, Figueroa HEH (2013) Dielectric resonator antenna for applications in nanophotonics. Opt Express 21:1234–1239. CrossRefGoogle Scholar
  9. 9.
    Dregely D, Taubert R, Dorfmuller J, Vogelgesang R, Kern K, Giessen H (2011) 3D optical Yagi-Uda nanoantenna array. Nat Commun 2:10.1038. CrossRefGoogle Scholar
  10. 10.
    Singh R, Rockstuhl C, Menzel C, Meyrath TP, He M, Giessen H, Lederer F, Zhang W (2009) Spiral-type terahertz antennas and the manifestation of the Mushiake principle. Opt Express 17:9971–9980. CrossRefGoogle Scholar
  11. 11.
    Pan Z, Guo J (2013) Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas. Opt Express 21:32491–32500. CrossRefGoogle Scholar
  12. 12.
    Grosjean T, Mivelle M, Burr GW, Baida FI (2013) Optical horn antennas for efficiently transferring photons from a quantum emitter to a single-mode optical fiber. Opt Express 21:1762–1772. CrossRefGoogle Scholar
  13. 13.
    Ramaccia D, Bilotti F, Toscano A, Massaro A (2011) Efficient and wideband horn nanoantenna. Opt Lett 36:1743–1745. CrossRefGoogle Scholar
  14. 14.
    Ooi KJA, Bai P, Gu MX, Ang LK (2011) Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides. Opt Express 19:17075–17085. CrossRefGoogle Scholar
  15. 15.
    Sharma P, Kumar VD (2016) Investigation of multilayer planar hybrid plasmonic waveguide and bends. Electronics Letters (IET) 52:732–734. CrossRefGoogle Scholar
  16. 16.
    Sharma P, Kumar VD (2018) All optical logic gates using hybrid metal insulator metal plasmonic waveguide. IEEE Photon Technol Lett 30:959–962. CrossRefGoogle Scholar
  17. 17.
    Sharma P, Kumar VD (2017) Hybrid insulator metal insulator planar plasmonic waveguide based components. IEEE Photon Technol Lett 29:1360–1363. CrossRefGoogle Scholar
  18. 18.
    Maier SA (2007) Surface plasmon Polariton at metal/insulator interfaces. In: Plasmonics: Fundamentals and applications. Springer Science, New York chap 2, sec 2.2, pp. 25–28CrossRefGoogle Scholar
  19. 19.
    Z. Zhang (2008) Silicon based photonic devices: design, fabrication and characterization. Ph.D thesis, KTH, SwedenGoogle Scholar
  20. 20.
    Miyazaki HT (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. PRL 96:097401. CrossRefGoogle Scholar
  21. 21.
    Constantine A. Balanis (2005) Antenna theory analysis and design. 3rd edition Chapter 14 A John Wiley & Sons, Inc., PublicationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Discipline of Electronics and CommunicationsIndian Institute of Information Technology, Design & ManufacturingJabalpurIndia

Personalised recommendations