, Volume 14, Issue 2, pp 425–433 | Cite as

Surface Plasmon-Assisted Modification of χ(3) Non-Linearity in a Three-Level Active Medium Near Gold Grating

  • Prince GuptaEmail author


This study presents a theoretical calculation for the surface plasmon polariton near-field assisted modification of non-linearities of a three-level quantum system placed on top of one-dimensional gold grating structure. The strong coupling of intense electromagnetic near-field, tightly confined at the interface of dielectric-metal grating, can dramatically influence the higher orders of non-linearity of a quantum system placed in the vicinity of grating. We have obtained a full solution of the three-level quantum system problem in our previous study (Gupta et al. J Opt 18(10):105001, 2016). It can, however, be advantageous to focus on the effects of specific orders of the polarizabilities, particularly at lower intensities of light. It then becomes easier to identify the various effects of the non-linearities on a light probe. In this work, I focus on the χ(3) non-linearity of a given active medium.


Nonlinearity Three level quantum system Surface plasmon polariton Strong coupling regime 



Prince Gupta acknowledges Professor S. Anantha Ramakrishna and Professor H. Wanare for their insightful comments and discussion and for providing the facilities to perform the calculation.


  1. 1.
    Gupta P, Ramakrishna SA, Wanare H (2016) Strong coupling of surface plasmon resonances to molecules on a gold grating. J Opt 18(10):105001Google Scholar
  2. 2.
    Tame MS, McEnery KR, Ozdemir K, Lee J, Maier SA, Kim MS (2013) Nat Phys 9:329–340Google Scholar
  3. 3.
    Burresi M, Van Oosten D, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L (2009) Probing the magnetic field of light at optical frequencies. Science 326(5952):550–553Google Scholar
  4. 4.
    Shadrivov IV, Kozyrev AB, van der Weide DW, Kivshar YS (2008) Nonlinear magnetic metamaterials. Opt Express 16(25):20266–20271Google Scholar
  5. 5.
    Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D, Yu Y (2017) Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt Express 25(4):3675–3681Google Scholar
  6. 6.
    Chen J, Zha T, Zhang T, Tang C, Yu Y, Liu Y, Zhang L (2017) Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials. J Light Technol 35(1):71–74Google Scholar
  7. 7.
    Chen J, Zhang T, Tang C, Mao P, Liu Y, Yu Y, Liu Z (2016) Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes. IEEE Photon Technol Lett 28(14):1529–1532Google Scholar
  8. 8.
    Chen J, Tang C, Mao P, Peng C, Gao D, Yu Y, Wang Q, Zhang L (2016) Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials. IEEE Photon J 8(1):1–7Google Scholar
  9. 9.
    Ridolfo A, Di Stefano O, Fina N, Saija R, Savasta S (2010) Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the fano effect on photon statistics. Phys Rev Lett 105(26):263601Google Scholar
  10. 10.
    Tan SF, Wu L, Yang JKW, Bai P, Bosman M, Nijhuis CA (2014) Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343(6178):1496–1499Google Scholar
  11. 11.
    Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94 (9):1481–1486Google Scholar
  12. 12.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193Google Scholar
  13. 13.
    Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D (2002) Low-threshold terahertz quantum-cascade lasers. Appl Phys Lett 81(8):1381–1383Google Scholar
  14. 14.
    El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5 (5):829–834Google Scholar
  15. 15.
    Manjavacas A, García De Abajo FJ, Nordlander P (2011) Quantum plexcitonics: strongly interacting plasmons and excitons. Nano Lett 11(6):2318–2323Google Scholar
  16. 16.
    Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90(2):027402Google Scholar
  17. 17.
    Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photon 6(11):737–748Google Scholar
  18. 18.
    Cox JD, García De Abajo FJ (2014) Electrically tunable nonlinear plasmonics in graphene nanoislands. Nat Commun 5:5725Google Scholar
  19. 19.
    Kroo N, Varro Sa, Farkas G, Dombi P, Oszetzky D, Nagy A, Czitrovszky A (2008) Nonlinear plasmonics. J Mod Opt 55(19-20):3203–3210Google Scholar
  20. 20.
    Lu Z, Zhu K-D (2008) Enhancing kerr nonlinearity of a strongly coupled exciton–plasmon in hybrid nanocrystal molecules. J Phys B: Atom, Mol Opt Phys 41(18):185503Google Scholar
  21. 21.
    Yan J-Y, Zhang W, Duan S, Zhao X-G (2008) Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots. J Appl Phys 103(10):104314Google Scholar
  22. 22.
    Esteban R, Laroche M, Greffet J-J (2009) Influence of metallic nanoparticles on upconversion processes. J Appl Phys 105(3):033107Google Scholar
  23. 23.
    Pu Y, Grange R, Hsieh C-L, Psaltis D (2010) Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 104(20):207402Google Scholar
  24. 24.
    Yannopapas V (2010) Enhancement of nonlinear susceptibilities near plasmonic metamaterials. Opt Commun 283(8):1647–1649Google Scholar
  25. 25.
    Thanopulos I, Paspalakis E, Yannopapas V (2012) Plasmon-induced enhancement of nonlinear optical rectification in organic materials. Phys Rev B 85(3):035111Google Scholar
  26. 26.
    Li J-B, Kim N-C, Cheng M-T, Li Z, Hao Z-H, Wang Q-Q (2012) Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems. Opt Express 20(2):1856–1861Google Scholar
  27. 27.
    Singh MR (2013) Enhancement of the second-harmonic generation in a quantum dot–metallic nanoparticle hybrid system. Nanotechnology 24(12):125701Google Scholar
  28. 28.
    Cox JD, Singh MR, Von Bilderling C, Bragas AV (2013) A nonlinear switching mechanism in quantum dot and metallic nanoparticle hybrid systems. Adv Opt Mater 1(6):460–467Google Scholar
  29. 29.
    Liu XN, Yao DZ, Zhou HM, Chen F, Xiong GG (2013) Third-order nonlinear optical response in quantum dot–metal nanoparticle hybrid structures. Appl Phys B 113(4):603–610Google Scholar
  30. 30.
    Paspalakis E, Evangelou S, Kosionis SG, Terzis AF (2014) Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system. J Appl Phys 115(8):083106Google Scholar
  31. 31.
    Hsiao VKS, Zheng YB, Juluri BK, Huang TJ (2008) Light-driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals. Adv Mater 20(18):3528–3532Google Scholar
  32. 32.
    Tao J, Wang QJ, Hu B, Zhang Y (2012) An all-optical plasmonic limiter based on a nonlinear slow light waveguide. Nanotechnology 23(44):444014Google Scholar
  33. 33.
    Mohapatra S, Mishra YK, Warrier AM, Philip R, Sahoo S, Arora AK, Avasthi DK (2012) Plasmonic, low-frequency raman, and nonlinear optical-limiting studies in copper–silica nanocomposites. Plasmonics 7(1):25–31Google Scholar
  34. 34.
    Nikolov ID (2005) Nanofocusing devices development and nano-medicine. Curr Nanosci 1(3):211–224Google Scholar
  35. 35.
    Kou Y, Ye F, Chen X (2012) Surface plasmonic lattice solitons. Opt Lett 37(18):3822–3824Google Scholar
  36. 36.
    Ganesh N, Block ID, Mathias PC, Zhang W, Chow E, Malyarchuk V, Cunningham BT (2008) Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors. Opt Express 16 (26):21626–21640Google Scholar
  37. 37.
    Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf A Physicochem Eng Asp 171(1):115–130Google Scholar
  38. 38.
    Fort E, Grésillon S (2007) Surface enhanced fluorescence. J Phys D: Appl Phys 41(1):013001Google Scholar
  39. 39.
    Mandal P, Gupta P, Nandi A, Ramakrishna SA (2012) Surface enhanced fluorescence and imaging with plasmon near-fields in gold corrugated gratings. J Nanophoton 6(1):063527–063527Google Scholar
  40. 40.
    Campion A, Kambhampati P (1998) Surface-enhanced raman scattering. Chem Soc Rev 27(4):241–250Google Scholar
  41. 41.
    Mandal P, Nandi A, Ramakrishna SA (2012) Propagating surface plasmon resonances in two-dimensional patterned gold-grating templates and surface enhanced raman scattering. J Appl Phys 112(4):044314Google Scholar
  42. 42.
    Zheludev NI, Prosvirnin SL, Papasimakis N, Fedotov VA (2008) Lasing spaser. Nat Photon 2 (6):351–354Google Scholar
  43. 43.
    Stockman MI (2010) The spaser as a nanoscale quantum generator and ultrafast amplifier. J Opt 12(2):024004Google Scholar
  44. 44.
    Plum E, Fedotov VA, Kuo P, Tsai DP, Zheludev NI (2009) Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt Express 17(10):8548–8551Google Scholar
  45. 45.
    Bellessa J, Bonnand C, Plenet JC, Mugnier J (2004) Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys Rev Lett 93(3):036404Google Scholar
  46. 46.
    Törmä P, Barnes WL (2014) Strong coupling between surface plasmon polaritons and emitters: a review. Rep Progress Phys 78(1):013901Google Scholar
  47. 47.
    González-Tudela A, Huidobro PA, Martín-Moreno L, Tejedor C, García-Vidal FJ (2013) Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys Rev Lett 110(12):126801Google Scholar
  48. 48.
    Asadpour SH, Sahrai M, Sadighi-Bonabi R, Soltani A, Mahrami H (2011) Enhancement of kerr nonlinearity at long wavelength in a quantum dot nanostructure. Phys E: Low-dimensional Syst Nanostruct 43 (10):1759–1762Google Scholar
  49. 49.
    Leegwater JA, Mukamel S (1992) Exciton-scattering mechanism for enhanced nonlinear response of molecular nanostructures. Phys Rev A 46(1):452Google Scholar
  50. 50.
    Ganeev RA, Ryasnyansky AI, Kamalov Sh R, Kodirov MK, Usmanov T (2001) Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals. J Phys D Appl Phys 34(11):1602Google Scholar
  51. 51.
    Renger J, Quidant R, Van Hulst N, Novotny L (2010) Surface-enhanced nonlinear four-wave mixing. Phys Rev Lett 104(4):046803Google Scholar
  52. 52.
    Gehr RJ, Boyd RW (1996) Optical properties of nanostructured optical materials. Chem Mater 8 (8):1807–1819Google Scholar
  53. 53.
    Yu Z, Grady NK, Ayala-Orozco C, Halas NJ (2011) Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett 11(12):5519–5523Google Scholar
  54. 54.
    Van Nieuwstadt JAH, Sandtke M, Harmsen RH, Segerink FB, Prangsma JC, Enoch S, Kuipers L (2006) Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. Phys Rev Lett 97(14):146102Google Scholar
  55. 55.
    Niu Y, Gong S (2006) Enhancing kerr nonlinearity via spontaneously generated coherence. Phys Rev A 73 (5):053811Google Scholar
  56. 56.
    Asadpour SH, Sahrai M, Soltani A, Hamedi HR (2012) Enhanced kerr nonlinearity via quantum interference from spontaneous emission. Phys Lett A 376(3):147–152Google Scholar
  57. 57.
    Hong-Ju G, Yue-Ping N, Li-Chun W, Shi-Qi J, Shang-Qing G (2008) Trichromatic manipulation of kerr nonlinearity in a three-level a atomic system. Chin Phys Lett 25(10):3656Google Scholar
  58. 58.
    Ren J, Chen H, Gu Y, Zhao D, Zhou H, Zhang J, Gong Q (2016) Plasmon-enhanced kerr nonlinearity via subwavelength-confined anisotropic purcell factors. Nanotechnology 27(42):425205Google Scholar
  59. 59.
    Montgomery JM, Imre A, Welp U, Vlasko-Vlasov V, Gray SK (2009) Sers enhancements via periodic arrays of gold nanoparticles on silver film structures. Opt Express 17(10):8669–8675Google Scholar
  60. 60.
    Weber WH, Ford GW (1981) Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation. Opt Lett 6(3):122–124Google Scholar
  61. 61.
    Gupta P (2018) Controlling level splitting by strong coupling of surface plasmon resonances with rhodamine-6g on a gold grating. Plasmonics:1–11Google Scholar
  62. 62.
    Boyd RW (2003) Nonlinear optics. Academic press, CambridgeGoogle Scholar
  63. 63.
    Evangelou S, Yannopapas V, Paspalakis E (2014) Modification of kerr nonlinearity in a four-level quantum system near a plasmonic nanostructure. J Mod Opt 61(18):1458–1464Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology KanpurKanpurIndia
  2. 2.School of Mechanical EngineeringYonsei UniversitySeodaemun-guRepublic of Korea

Personalised recommendations