Advertisement

Plasmonics

, Volume 14, Issue 2, pp 415–423 | Cite as

High-Quantum Efficiency of the Plasmonic Photodetectors-Based on Coupling Between Ag Nanoparticles and Ag Nanograting Electrodes

  • Ali BahariEmail author
  • Mohsen Ghahremani Salianeh
Article
  • 47 Downloads

Abstract

The plasmonic effects due to the coupling of silver spherical nanoparticles with silver nanograting electrodes on active medium of the photo detector are investigated. Calculations show that the coupling of nanoparticles and nanograting electrodes at the surface of active medium lead to reflection wave into the active medium, and electrodes can participate in the absorption and quantum efficiency. Calculations show that the addition of nanograting electrodes to the structure can lead to increase the absorption coefficient up to 120% respect to the plasmonic structure containing only nanoparticles and about 4.5 times that of conventional (metal-semiconductor -metal ) MSM photo detectors.

Keywords

Photodetectors Nanoparticles Surface plasmons Optical properties 

References

  1. 1.
    Heck MJR, Jared FB, Michael LD et al (2013) Hybrid silicon photonic integrated circuit technology. IEEE Journal of Selected Topics in Quantum Electronics 19:6100117–6100117CrossRefGoogle Scholar
  2. 2.
    Soole JBD, Schumacher H (1991) InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications. IEEE J Quantum Electron 27:737–752CrossRefGoogle Scholar
  3. 3.
    Liu MY, Chou SY (1995) Internal emission metal-semiconductor-metal photodetectors on Si and GaAs for 1.3 μm detection. Appl Phys Lett 66(20):2673–2676CrossRefGoogle Scholar
  4. 4.
    Ito M, Wada O (1986) Low dark current GaAs metal-semiconductor- metal (MSM) photodiodes using WSi, contacts. IEEE J Quantum Electron 22:1073–1077CrossRefGoogle Scholar
  5. 5.
    Chou SY, Liu MY (1992) Nanoscaletera-hertz Metal-Semiconductor-Metal Photodetectors. IEEE J Quantum Electron 28(10):2358–2368CrossRefGoogle Scholar
  6. 6.
    Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19(22):22029–22106CrossRefGoogle Scholar
  7. 7.
    Sarid D, Challener WA (2010) Modern introduction to surface plasmons: theory, Mathematica modeling, and applications. Cambridge University PressGoogle Scholar
  8. 8.
    Rycenga M, Claire MC, Zeng J, Li W, Christine MH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712CrossRefGoogle Scholar
  9. 9.
    Liu X, Swihart MT (2014) Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 43:3908–3920CrossRefGoogle Scholar
  10. 10.
    Zhou Sh, Pi Xi, Ni Z, Ding Y, Jiang Y, Jin Ch, Delerue Ch, Yang D, Nozaki T (2015) Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. ACS Nano 9:378–386CrossRefGoogle Scholar
  11. 11.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, vanDuyne RP (2008) Biosensing with plasmonic nanosensors. NatureMaterials 7(6):442–453CrossRefGoogle Scholar
  12. 12.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. Appl Phys 101:093105CrossRefGoogle Scholar
  13. 13.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101(9):093105–1-8CrossRefGoogle Scholar
  14. 14.
    Stuart HR, Hall DG (1998) Island size effects in nanoparticle enhanced detectors. Appl Phys Lett 73(26):3815–7CrossRefGoogle Scholar
  15. 15.
    Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86(6):063106–1-3CrossRefGoogle Scholar
  16. 16.
    Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632CrossRefGoogle Scholar
  17. 17.
    Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86(6):063106–1-3CrossRefGoogle Scholar
  18. 18.
    Yu ET, Derkacs D, Lim SH, Matheu P, Schaadt DM (2008) Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices. Proceedings of the SPIE 7033:70331VCrossRefGoogle Scholar
  19. 19.
    Sundararajan SP, Grady NK, Mirin N, Halas NJ (2008) Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode. Nano Lett 8(2):624–630CrossRefGoogle Scholar
  20. 20.
    Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93(19):191113CrossRefGoogle Scholar
  21. 21.
    Tan CL, Lysak VV, Das N, Karaar A, Alameh K, Lee YT (2010) Absorption enhancement of MSM photo-detector structure with a plasmonic double grating structure. In: 10th IEEE international conference on nanotechnology. IEEE NANO, vol 2010, pp 849–853Google Scholar
  22. 22.
    Das N, Karar A, Tan CL, Alameh K, Lee YT (2011) Impact of nanograting phase-shift on light absorption enhancement in plasmonics-based metal-semiconductor-metal photodetectors. Advances in Optical Technologies 2011:504530CrossRefGoogle Scholar
  23. 23.
    Tan CL, Karar A, Alameh K, Lee YT (2013) Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles. Opt Express 21(2):1713–1725CrossRefGoogle Scholar
  24. 24.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business MediaGoogle Scholar
  25. 25.
    Collin S, Pardo F, Teissier R, Pelourad J (2004) Efficient light absorption in metal-semiconductor-metal nanostructures. Appl Phys Lett 85(2):194–196CrossRefGoogle Scholar
  26. 26.
    Yu Z, Veronis G, Fan S (2006) Design of midinfraredphotodetectors enhanced by surface plasmons on grating structures. Appl Phys Lett 89(15):151116CrossRefGoogle Scholar
  27. 27.
    Hetterich J, Bstian G, Gippius N, Tikhodeev S, von Plessen G (2007) Optimized Design of Plasmonic MSM Photodetector. IEEE J Quantum Electron 43(10):855–859CrossRefGoogle Scholar
  28. 28.
    Tan CL, Lysk VV, Alameh K, Lee YT (2010) Absorption enhancement of 980 nm MSM photodetector with plasmonic grating structure. Opt Commun 283:1763–1767CrossRefGoogle Scholar
  29. 29.
    Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic mediam. IEEE Trans Antennas Propag 14:302–307CrossRefGoogle Scholar
  30. 30.
    Kunz KS, Luebbers RJ (1993) The finite difference time domain method for electromagnetics. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Gai H, Wang J, Tian Q (2007) Modified Debye model parameters of metals applicable for broadband calculations. Appl Opt 46 12:2229–2233CrossRefGoogle Scholar
  32. 32.
    Kreibig U (1995) Optical Properties of Metal Clusters. Springer, BerlinCrossRefGoogle Scholar
  33. 33.
    Coronado EA, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach. J Chem Phys 119:3926–3934CrossRefGoogle Scholar
  34. 34.
    Shackleford JA, Grote R, Currie M, Spanier JE, Nabet B (2009) Integrated plasmonic lens photodetector. Appl Phys Lett 94:083501, 13CrossRefGoogle Scholar
  35. 35.
    Mousavi SS, Stohr A, Berini P (2014) Plasmonic photodetector with terahertz electrical bandwidth. Appl Phys Lett 104:143112CrossRefGoogle Scholar
  36. 36.
    Jee SW, Zhou K, Kim DW, Lee JH (2014) A silicon nanowire photodetector using Au plasmonic nanoantennas. Nano Convergence 1(1):29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsLorestan UniversityKhorramabadIran

Personalised recommendations