, Volume 14, Issue 2, pp 407–413 | Cite as

Au/Ag Bimetallic Nanocomposites as a Highly Sensitive Plasmonic Material

  • Taerin Chung
  • Charles Soon Hong Hwang
  • Myeong-Su Ahn
  • Ki-Hun JeongEmail author


We report Au/Ag bimetallic nanocomposites as a highly sensitive plasmonic material. A unit approach via a three-dimensional numerical modeling is introduced to observe collective plasmon resonance in Au/Ag bimetallic nanocomposites as well as Au mono-metallic nanoensembles. Au nanoensembles provide consistently identical plasmon wavelength, independent of inter-unit distance. In analogy with mono-metallic nanoensembles, Au/Ag bimetallic nanocomposites distinctly feature converging dual plasmon resonance peaks to a single plasmon resonance peak, strongly depending on the packing density and the unit size. An effective unit size of bimetallic nanocomposites is below 2.5 nm in a subwavelength structure, which is small enough to feature bimetallic nanocomposites. As a result, the Au/Ag bimetallic nanocomposites clearly show exceptionally high sensitivity and figure-of-merit (approximately 3-fold of conventional plasmon sensitivity and 4.3-fold of conventional plasmon FOM), resulting from coupled Au-Ag quadrupole bimetallic nanounits. This study provides essential rationales for Au/Ag bimetallic nanocomposites serving as a desirable and alternative plasmonic material for advanced nanoplasmonic-sensing technologies.


Nanomaterials Plasmon sensitivity Bimetallic nanocomposites Metallic nanoalloy 



This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-IT1402-51 and National Research Foundation of Korea (NRF) Ministry of Science, ICT and Future Planning under Project Number 2018029899.


  1. 1.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453. CrossRefGoogle Scholar
  2. 2.
    Jiang RB, Li BX, Fang CH, Wang JF (2014) Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv Mater 26:5274–5309. CrossRefGoogle Scholar
  3. 3.
    Jain PK, Huang XH, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem Res 41:1578–1586. CrossRefGoogle Scholar
  4. 4.
    Csaki A, Stranik O, Fritzsche W (2018) Localized surface plasmon resonance based biosensing. Expert Rev Mol Diagn 18:279–296. CrossRefGoogle Scholar
  5. 5.
    Chung T, Koker T, Pinaud F (2017) Gold nanorod/nanosphere clustering by split-GFP fragment assembly for tunable near-infrared SERS detections. Opt Mater Express 7:3270–3283. CrossRefGoogle Scholar
  6. 6.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857. CrossRefGoogle Scholar
  7. 7.
    Li XH, Zhu JM, Wei BQ (2016) Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 45:3145–3187. CrossRefGoogle Scholar
  8. 8.
    Han QY et al (2016) Ag-Au alloy nanoparticles: synthesis and in situ monitoring SERS of plasmonic catalysis. Sensors and Actuators B-Chemical 231:609–614. CrossRefGoogle Scholar
  9. 9.
    Chung T, Lee SY, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:10907–10929. CrossRefGoogle Scholar
  10. 10.
    Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779. CrossRefGoogle Scholar
  11. 11.
    Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291. CrossRefGoogle Scholar
  12. 12.
    Diez I, RHA R (2011) Fluorescent silver nanoclusters. Nanoscale 3:1963–1970. CrossRefGoogle Scholar
  13. 13.
    Herrmann JF, Kretschmer F, Hoeppener S, Hoppener C, Schubert US (2017) Ordered arrangement and optical properties of silica-stabilized gold nanoparticle-PNIPAM core-satellite clusters for sensitive Raman detection. Small 13.
  14. 14.
    Oh Y, Lee J, Lee M (2018) Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films. Appl Surf Sci 434:1293–1299. CrossRefGoogle Scholar
  15. 15.
    Kang M, Ahn MS, Lee Y, Jeong KH (2017) Bioplasmonic alloyed nanoislands using dewetting of bilayer thin films. Acs Appl Mater Interfaces 9:37154–37159. CrossRefGoogle Scholar
  16. 16.
    Ma PJ, Gao DL, Ni YX, Gao L (2016) Enhancement of optical nonlinearity by core-shell bimetallic nanostructures. Plasmonics 11:183–187. CrossRefGoogle Scholar
  17. 17.
    Takase M, Sawai Y, Nabika H, Murakoshi K (2011) Detection of adsorption sites at the gap of a hetero-metal nano-dimer at the single molecule level. J Photochem Photobiol A Chem 221:169–174. CrossRefGoogle Scholar
  18. 18.
    Kim S, Kim SK, Park S (2009) Bimetallic gold-silver nanorods produce multiple surface plasmon bands. J Am Chem Soc 131:8380−+. CrossRefGoogle Scholar
  19. 19.
    Park M, Hwang CSH, Jeong KH (2018) Nanoplasmonic alloy of Au/Ag nanocomposites on paper substrate for biosensing applications. Acs Appl Mater Interfaces 10:290–295. CrossRefGoogle Scholar
  20. 20.
    Park M, Kang BH, Jeong KH (2018) Paper-based biochip assays and recent developments: a review. Biochip J 12:1–10. CrossRefGoogle Scholar
  21. 21.
    Becker J, Zins I, Jakab A, Khalavka Y, Schubert O, Sonnichsen C (2008) Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods. Nano Lett 8:1719–1723. CrossRefGoogle Scholar
  22. 22.
    Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294. CrossRefGoogle Scholar
  23. 23.
    Auguie B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101.
  24. 24.
    Juve V et al (2013) Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods. Nano Lett 13:2234–2240. CrossRefGoogle Scholar
  25. 25.
    Ng KC, Lin FC, Yang PW, Chuang YC, Chang CK, Yeh AH, Kuo CS, Kao CR, Liu CC, Jeng US, Huang JS, Kuo CH (2018) Fabrication of bimetallic Au-Pd-Au nanobricks as an archetype of robust nanoplasmonic sensors. Chem Mater 30:204–213. CrossRefGoogle Scholar
  26. 26.
    Jung I, Kim M, Kwak M, Kim G, Jang M, Kim SM, Park DJ, Park S (2018) Surface plasmon resonance extension through two-block metal-conducting polymer nanorods. Nat Commun 9.
  27. 27.
    Stoll T, Maioli P, Crut A, Burgin J, Langot P, Pellarin M, Sánchez-Iglesias A, Rodríguez-González B, Liz-Marzán LM, del Fatti N, Vallée F (2015) Ultrafast acoustic vibrations of bimetallic nanoparticles. J Phys Chem C 119:1591–1599. CrossRefGoogle Scholar
  28. 28.
    Chung T, Koker T, Pinaud F (2016) Split-GFP: SERS enhancers in plasmonic nanocluster probes. Small 12:5891–5901. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bio and Brain engineering and KAIST Institute for Health Science and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations